

Beam backgrounds in the CMS pixel detector Hella Snoek - University of Zurich - CMS Vertex 2010 - Loch Lomond

Contents

*Description of beam background events observed in the CMS pixel detector.

*Rejection algorithm of beam background events using pixel data.

The CMS pixel detector

Hella Snoek - University of Zurich - Vertex 2010

3

Multiplicities during data taking

- * Data taken at the LHC pixel detector is much more busy than expected from pp collisions simulations.
- * Two exponential tails, two types of data?

Energy dependency

* The higher the energy of the beam, the more charge we deposit in the pixel detector.

Closer look at a single 'busy' event

Track multiplicity

* Also in the track multiplicity we see a large exponential tail due to all the fake tracks.

Closer look at the inner layer

* The barrel works as a bubble chamber, the particles fly parallel to the silicon.

* The background events leave (centimeters!) long charge deposits.

We see production of secondaries in the silicon volume.

Closer look at a single 'busy' event

- particles enter on one side and leave on the other of the pixel detector
- * From studies we learned:
 - they come 'in-time' with the proton beam
 - they are present in colliding and non-colliding bunches
 - \checkmark they come from both beams
 - \checkmark no 'point source' was identified
 - ✓ an average 7 TeV event has about 50 particles leaving charge in the pixel end-caps
 - ✓ beam background events are compatible with beam-gas interactions

Hella Snoek - University of Zurich - Vertex 2010

Background-event rates

- Rate is calculated by looking at noncolliding bunch crossings and requiring activity in the scintillators (BSC)
- When scaled to the beam intensities the rate is
 - * flat over (at least) a period of a run
 - * the same for beam 1 and beam 2
 - * independent of the beam energy
- The beam-backgrounds rate scale linear
 with the intensity, the collisions scale quadratically
- * We have (so far) not observed dependencies to changing beam parameters (squeezing).
- The rate is estimated around 0.5 Hz/bunch/beam/10¹⁰ protons
- At a rate of 11kHz of physics events at 10¹¹ protons per bunch an overlap with a background events is expected at a rate of about 1‰

Beam-gas simulations

* Simulation of ideal LHC conditions (p.e. vacuum pressure)

- * Agrees well with the fluency measurements in the pixel detector.
- The pixel detector is in a very good position to study the background events

Fluka code: AIP Conf.Proc. 896:31-49,2007

of Zurich - Vertex 2010

Pixel based background event filter A BIT ON LOCAL PIXEL HIT RECONSTRUCTION

Pixel hit reconstruction: CERN-CMS-NOTE-2007-033 PoS VERTEX2007:035,2007

- * CMS uses an iterative tracking algorithm.
- * Reconstructed pixel hit locations are refined using a template based method.
- * The template fit searches for the optimal hit reconstruction using the local impact angle of the track hypothesis.
- * The template fit returns a probability that the track matches the cluster.
- * If the cluster does not match the impact angle of the track, a low probability is returned.

Fraction of low probability clusters

- * Fraction of low-probability clusters versus the total number of clusters (counting only barrel clusters).
- * This fraction is sensitive to the number of fake tracks in the event.
- * A large number of fake tracks gives a high fraction of low probability clusters.
- * The pixel-template filter, removes events with a fraction larger than 0.4.
- Events with no on-track clusters in the barrel cannot be identified and are added to the background category.

Separation of collision and background events USING THE PIXEL-TEMPLATE FILTER

- * The pixel-template filter separates the two tails in the multiplicity distributions.
- * Collisions and beam background events overlap, a simple cut in the distribution would not have worked.

Conclusions

* The beam-background events are compatible with beam-gas interactions hypothesis

- * The rates and fluency are within expectations.
- * They leave a lot of charge in the pixel volume.
- * They create many fake tracks.
- * Beam-background events can be separated from pp collision events using a filter based on the compatibility of the cluster-shape versus the reconstructed track.

* Physics-background overlapping events are expected. The pixel-template filter has prospects to disentangle the two events.

Thanks to all the CMS collaborators

Backup

Comparison with other filters

* Other filters are present in CMS based on

* a well reconstructed vertex

*

- * the fraction of high quality tracks
- * the BSC scintillator timing information

* The pixel template filter agrees well with the other available filters.

 * The pixel template filter might allow us to separate on a cluster-by-cluster basis the
 * collision from the beam-background contributions in overlapping events.

On versus off track clusters

Background removal

- Different ways to get beam-background free samples: one possibility is to use triggers from beam scintillation counter (BSC) placed at 11 meters from interaction point
 - «Minimum bias» : select events with simultaneous hits on both BSC station

 «Beam halo» veto: suppress events in which particles are producing hits with large delay (>40ns) between both sides signals

 «Beam-gas» veto: suppress events with 2 hits on one side and no hits on the other side

