FCC Software Workshop Introduction and Overview

FCCSW Workshop October 2019

Oct 02, 2019 <u>G Ganis, C Helsens</u> for the FCC Software Group CERN

The FCC@CERN project

- Circular Collider of 97.75 km of circumference
- Phase 1: e+e-
 - {~91,~160,240,~360} GeV
 - Data taking period: 2039-2054
- Phase 2: pp, ep
 - ~100 TeV pp; possibly ep in parallel
 - Data taking period: 2065-2090
- Conceptual Design Report Dec 2018
 - Used as input for ESPP
 - Based on 150 TB of full simulated data and 100 TB of Delphes events

FCC Software

- Set of software packages, tools and standards at the service of FCC studies
- What exists is largely based on what has been used to prepare of the <u>FCC CDR</u>
- A new phase started to continue and expand to more detailed studies, in particular for the e⁺e⁻ machine
- Closely follows the ongoing R&D activities about a Common Software Stack (Key4HEP)

Goals of the FCC Software Workshop / Tutorials

- Make participants able to use what exists
- Make interested participants able to contribute to the evolution / development
- Make participant to provide feedback on
 - The format
 - The topics
 - Expectations

Structure of the event

- Day 1 (today): talks
 - Overview
 - Specific components
 - Framework, Geometry, Reconstruction, Generators, Analysis
- Day 2 (tomorrow) Hands-on tutorials
 - Full analysis chain example (ttbar)
 - ee->HZ analysis
 - Calorimeter example
 - Drift Chamber
 - AoB: could possibly adapt to people wishes and help them getting started

Word of Caution

- Pilot tutorial session
 - Plan to have regular editions (next during January Physics Workshop)
 - Your feedback highly appreciated
 - Questionnaire circulated after the workshop
- FCC software CERN centric
 - Intensive use requires a CERN account
 - Temporary access for the workshop, not a long term solution

Overview of the existing FCC Software components

Basic Software Requirements

- Conceptual / Technical Detector Design studies
 - Flexibility
 - Ideal and detailed detector description
 - Open to evolution
- Broad range of event complexity
 - o e+e- vs pp vs e-p
- Need to support physics and detector studies
 - Parametrised, fast and full simulation (and mixture of the 3)
- Aim to de-duplicate efforts
 - One software stack to support all the cases, all the detector concepts, and future (proto-)collaborations

Ingredients

Event Data Model Detector Description

Simulation

Reconstruction

Analysis

Software Framework

Workload and Data Management

Software Infrastructure

Software Framework

- A software framework provides
 - Vocabulary ('algorithm', 'tool', 'service', ...)
 - Well defined, stable interfaces
 - Plug-in based, evolving implementations
 - Homogeneous configuration, logging, error reporting
- GAUDI: data processing framework
 - Designed to managed generic experiment workflows
 - Separate data and algorithms; well defined interfaces
 - User's code encapsulated in Algorithm's and Tool's
 - Different persistent and transient views of data
 - Originating from LHCb, adopted by ATLAS, Daya Bay, LZ, ...
 - Actively developed to face LHC Run 3 and Run 4 challenges (high PU)

GAUDI and FCCSW

Currently integrates

- Generation
- Parametrized/Fast/Full simulation
- Reconstruction

Generation

- Pythia8 as main general purpose generator (other Gen studied)
 - Hadronization and/or LHE reader
 - SingleGun shooter
- HepMC, HepEVT readers
- Pileup overlay technology
- All generators available in LCG_releases can be used

Talk by J. Faltova

Event Data Model

- Heart of any HEP experiment software
- Complete description of observables produced by detectors
- Basis for derived quantities described in analysis
- Follows needs and phases of the experiment
- Each experiment had its own EDM, though communalities, inside HEP, are sometimes evident

FDM4HFP

- Ongoing project to define an EDM to serve all HEP experiments
 - o FCC, ILC, CLIC, CEPC
 - LHC OpenData, Data preservation
- Tightly connected to Key4HEP

Current FCC Event Data Model

- Components
 - o Point, Lorentz Vectors, BareHit, BareCluster, BareParticle, BareJet
- Particles
 - MCParticle, ParticleMCParticleAssociation, Particle, TaggedParticle
- Vertices
 - Vertex, GenVertex
- Track Detector Types
 - TrackHit, PositionedTrackHit, DigiTrackHitAssociation, TrackCluster, TrackState, Track, WeightedTrack
- Calorimeter Types
 - CaloHit, CaloCluster, CaloHitMCParticleAssociation, CaloHitAssociation

Current FCC Event Data Model (2)

- High Level Reco objects
 - MET, Jet, TaggedJet, ResolvedJet, GenJet, TaggedGenJet, ResolvedGenJet
- Event / Run Types
 - EventInfo

PODIO: an EDM toolkit

- Plain Old Data
 - Keep memory model simple, enabling fast I/O and efficient vectorization
- Automatic code generation
 - Consistent and homogeneous implementation, minimizes mistakes
- Support for different backends
- Input specified in YAML format
- Three-layers
 - User: handles objects and collections
 - Object: transient, relations between objects
 - POD: actual data structures

Developed in the context of AIDA 2020 (git repo)

FCC EDM with PODIO

- Dedicated repository: https://github.com/HEP-FCC/fcc-edm
- YAML: https://raw.githubusercontent.com/HEP-FCC/fcc-edm/master/edm.yaml

```
fcc::Track:
    Description: "Track reconstructed from tracker clusters "
    Author : "C. Bernet, B. Hegner"

Members:
    - float chi2 // chi2 returned by the track fit
    - unsigned ndf // Number of deg of freedom of fit
    - unsigned bits // Stores flags
OneToManyRelations:
    - fcc::PositionedTrackHit hits // Hits used
    - fcc::TrackState states // States along the track
```

FCC EDM at work

PODIO data service interface at \$FCCVIEW/include/podio

Ixplus \$ source /cvmfs/fcc.cern.ch/sw/latest/setup.sh Ixplus \$ ls \$FCCVIEW/include/podio ASCIIWriter.h CollectionIDTable.h ICollectionProvider.h ObjBase.h PythonEventStore.h ROOTWriter.h CollectionBase.h EventStore.h IReader.h ObjectID.h ROOTReader.h podioVersion.h

EDM interface at \$FCCVIEW/include/datamodel

Ixplus \$ Is \$FCCVIEW/include/datamodel/Particle*
Particle.h ParticleConst.h ParticleMCParticleAssociation.h ParticleMCParticleAssociationConst.h
ParticleMCParticleAssociationObj.h ParticleCollection.h ParticleData.h
ParticleMCParticleAssociationCollection.h ParticleMCParticleAssociationData.h ParticleObj.h

Detector Description

- DD4HEP: generic detector view appropriate to support
 - simulation, reconstruction, analysis, ...
- Design goals
 - Complete
 - Single source of information
 - Easy of use

- Part of AIDA2020
- Used by CLIC, ILC, FCC, LHCb, CMS, SCT

DD4HEP and FCCSW

Talk by V. Volkl

- FCC-hh
 - Complete
 for reference
 detector

- FCC-ee
 - IDEA Concept
 - Beam Pipe, instrumentation
 - Vertex Detector, Drift Chamber
 - DREAM Calorimeter (under dev)
 - LAr+Tile calorimeter (under dev)

Simulation

- GAUDI components exists to create
 - User Actions
 - Regions
 - Sensitive detectors
 - saveOutput

- Mixing fast and full G4 simulation possible
 - SimG4Full / SimG4Fast

Parametric Simulation Tool : Delphes

- Very fast simulation for every detector
- Widely used for phenomenology
 - Also for CMS phase 2, LHCb, ...
- ID, particle/energy flow, pile-up, jet sub-structure, ...
- EDM Output in ROOT format
- Important tool for physics analysis, but need to"tune" the parametrisation to the detector response in full simulation
- In FCCSW
 - Sim/SimDelphesInterface

Reconstruction

Talk by V. Volkl

- Challenges: algorithm detector concept independent
 - Fully flexibility, avoid duplication
- Tracking
 - Track seeding (TrickTrack)
 - Hough Transform for drift chambers
 - Under implementation
 - ACTS integration
 - Conformal tracking
- Calorimeters
 - Sliding window (rectangular/ellipse)
 - Topo-clustering

Calo Reconstruction Example

Single 100 GeV e- reconstructed by sliding window

Single 100 GeV pion in 8+10 layers of the E+HCal reconstructed by topo-cluster

Analysis, Workload and Data Management, Software infrastructure

Analysis Workflow typical example

Talk by C. Helsens

- LHE producer
 - E.g., for FCC-hh, from GridPacks produced using MadGraph
 - E.g., for FCC-ee, Whizard with output format 'lhef'
- FCCSW
 - Run Pythia8 for parton shower + hadronization (also as generator)
 - Run Delphes parametrization (output EDM in ROOT format)
- HEPPY
 - Analysis Pre-Selection (output light flat ROOT Trees)
- Analysis Final Selection
 - ROOT, PyROOT, HEPPY
- Analysis Final Results
 - Limits, cross-sections, couplings, ...

HEPPY

- High Energy Physics with PYthon: modular python framework for the analysis of collision events
- Developed and still used for CMS
- In FCC is used to
 - Process EDM events, apply-preselection, produce a flat and light ROOT ntuple
 - Analyse the ROOT ntuple
 - Not the only code used for this purpose
- Flexible but slow
 - Plan to move to a a C++-based analysis framework, e.g. RDataFrame
 - At least for the most time-consuming parts

Workload and Data Management

- Homemade production system
 - Developed and used for the CDR data samples
 - Bookkeeping / Monitoring of the events produced on web pages
- Interfaced to CERN batch system
 - FCC dedicated CPU and storage (EOS) resources
 - Access controlled via MoU signature
- Plan to adopt a production option (DIRAC, RUCIO, etc.)
 in the medium term
 - Including distributed computing (not needed so far, though VO exists)

- Code repositories on GitHub, project HEP-FCC https://github.com/HEP-FCC/FCCSW, ...
- Development workflow
 - PR reviews, nightlies, Continuous Integration,
 Coding guidelines, Automatic code formatting,
 Static code analysis
- Builds (nightlies, releases) managed by Spack (HSF)
 - Actually run on EP-SFT resources

Software Infrastructure (2)

- Deliverables
 - FCCSW
 - Externals: FCCSW specific dependencies
 - Based on LCG releases

FCCSW - Main package

FCC externals fcc-edm fcc-physics tricktrack heppy podio ...

LCG release
Gaudi dd4hep ROOT Pythia8 ...

- Deployment on dedicated CernVM-FS repositories
 /cvmfs/fcc.cern.ch, /cvmfs/fcc-nightlies.cern.ch
- On lxplus

\$ source /cvmfs/fcc.cern.ch/sw/latest/setup.sh

http://hep-fcc.github.io/FCCSW/

Future Plans

Address missing / lacking / weak parts

- FCC-ee detector description, fast/full simulation
- Reconstruction tools
- Beam-related backgrounds
- Coherent MDI
- Complete palette of physics generators
- Adopt new solutions for analysis (RDataFrame, ...)
- Workload and Data management
- ...

Follow up on Key4HEP

- Contribute to the definition of EDM4HEP
 - Adopt EDM4HEP
- Contribute feedback, proposals .. on existing components
- Increase integration / usage of common components
- Ideally, rebase FCCSW on top of Key4HEP

Summary

- The FCC software stack assembled using as much as possible existing components
- Served well the purposes of the CDRs
- Started a new phase to further develop to support more detailed studies, in particular for e+e-
- Follow closely, participate and collaborate new common activities within HSF
 - Key4HEP, EDM4HEP

Workshop Practicalities

- All sessions in room 593/R-010 Salle 11
- VidyoConference available (see Indico page), however not ideal for hands-on
 - Priority will be given to the room
 - Also possible to use dedicated <u>Mattermost channel</u> to discuss
- Computing resources
 - FCC Software is CERN centric: CERN account required
 - Temporary credentials for those who do not have (locally only)
 - Exercises and demos prepared for lxplus (CentOS7)
 - Laptops connected at CERN can use a Specialized CernVM Virtual Machine
 - We can provide access to temporary resources if needed
 - Tutorials can also be run on <u>SWAN</u> within a web browser
 - More details during hands-on tomorrow
- Dinner tonight at Piatto D'Oro (see next slide) at 19h30

Workshop Dinner at Piatto d'Oro

- Reserved for 19h30
- People who have not signed up can still do it until the coffee break (by mail or voice).
- Tram 18 stop 'Bois-du-Lan' or 'Jardin Alpin-Vivarium'

