(©)]
—i
By
o
—i
S~
N
o
-7
=
o
=
(]
(S
(1)
—
[ty

FCC Physics analysis framework

Clement Helsens, CERN-EP

FCC analysis

Introduction/motivation

* | will review in this talk the analysis model used at FCC-hh and that is
being reworked for a better usage at both FCC-hh and FCC-ee

* FCC-hh analysis framework (event generation to final plots) has been
used to produce several billions of events and about 20 analyses

* How should the analysis model look like for FCC-ee?

(o)}
—
By
(@)
—
S~
N
o
4
—
o
=
(]
€
(1]
—
[ty
i)
(%2
B
(4]
C
(4]
Q
&)
L

Monte Carlo Event Generation

(©)]
—i
By
o
—i
S~
N
o
-7
=
o
=
(]
(S
(1)
—
[ty

T =
- (=

FCC analysis

w

FCC-hh(ee) Framework |G

1.

Links between various steps

egrated analysis chain

—

GridPack producer
Makes MG5_aMC@NLO GridPacks, need to understand if other GEN can do it

LHE Producer

Produce LHE files on condor queues, either from step 1) or on the fly. Need a detailed
review of the possibilities offered by other GEN (this has started as we have just seen)

FCCSW

Runs Pythia8 parton shower+hadronisation and Delphes with FCC detector
http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_fccee v01.php
Also need to support later other parton showers

Analysis pre-selection
Python framework produces flat ROOT trees

Analysis final selection

Python framework for optimising analysis cut flows and producing

Creates a database of LHE events

Creates a database of FCC events
=

Use the events in the database
to produce analyses templates

Use the events produced at pre-
selection to create stacked plots

Final analyses (custom, but we have limit setting tool for instance) —_—

(o)}
—
By
(@)
—
S~
N
o
v
o
o
=
(]
€
(1]
—
[ty
i)
(%2
S
(4]
C
(4]
O
&)
L

FCC-hh(ee) Framework

—
1. GridPack producer
* Makes MG5_aMC@NLO GridPacks, need to understand if other GEN can do it
2. LHE Producer Creates a database of LHE events

Produce LHE files on condor queues, either from step 1) or on the fly. Need a detailed
review of the possibilities offered by other GEN (this has started as we have just seen)

3. FCCSW

Runs Pythia8 parton shower+hadronisation and Delphes with FCC detector
http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_fccee v0l.php
Also need to support later other parton showers

Creates a database of FCC events

(o)}
—
By
(@)
—
S~
N
o
4
o
o
=
(]
€
(1]
—
[ty
i)
(%2
=
(4]
C
(4]
O
&)
L

. .) Use the events in the database
4. Analysis pre-selection In the tutorial to produce analyses templates
* Python framework produces flat ROOT trees Tomorrow
5. Analysis final selection Use the events produced at pre-
* Python framework for optimising analysis cut flows and producing selection to create stacked plots

6. Final analyses (custom, but we have limit setting tool for instance) —

2. Generation

* https://github.com/FCC-hh-framework/EventProducer

 Start from Madgrap gridpacks but no problem to use other gridpacks
* Create LHE files and store them on eos

* List of available samples and statistics for 100TeV and 27TeV (no LHE yet for
FCC-ee)
http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents.php
http://fcc-physics-events.web.cern.ch/fcc-physics-events/LHEevents helhc.php

(o)}
—
By
(@)
—
S~
N
o
v
o
o
=
(]
€
(1]
—
[ty
i)
(%2
S
(4]
C
(4]
O
&)
L

* Can also register to the database your own LHE files, they just need to
comply with simple formatting rules

* Fully adapted for FCC-ee if we have gridpacks, but we are investigating the
various ee generators to understand what could be done

3. Simulation (FCCSW Delphes)

* https://github.com/FCC-hh-framework/EventProducer

From the LHE files, create FCC EDM files for a given Delphes parametrisation

Also possible to directly simulate events with Pythia8 (what we did for FCC-
ee tutorial)

List of available samples and statistics is available for FCC 100/27TeV :
* http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_fcc_v02.php
* http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_helhc_v01.php

(o)}
—i
By
©
—i
S~
N
(@]
-7
=
o
=
(]
(S
(1)
—
[ty
i)
(%2
=
©
=
©
QO
&)
L

Also started for FCC-ee (90M events, used tomorrow for the tutorial)
* http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_fccee v01.php

4. Flat trees

* For producing flat trees specific to analysis
for the moment still using heppy
https://github.com/HEP-FCC/FCCAnalyses/

e Within heppy create an analysis directory
that contains always the same files:

* analysis.py
* defines
the list of modules to be run

the list of samples over which to run
(the inputs file lists and cross sections etc...
centrally defined and supported from step 2.

) TreeProducer.py selectedComponents = [
p8_ee_ZH_ecm249,
E) _init__.py p8_ee_ZZ_ecm240,

) p8_ee_WW_ecm240
[E) analysis.py

]

£) selection.py

from heppy.analyzers.Selector import Selector
sel_muons = cfg.Analyzer(

Selector,

‘sel_muons',

output = 'sel_muons’',

input_objects = 'muons’,

filter_func = lambda ptc: ptc.pt()>1@
)

select isolated muons
dressed_muons = cfg.Analyzer(
Selector,
‘dressed_muons',
output = 'dressed_muons’,
input_objects = 'sel_muons’,

filter_func = lambda ptc: ptc.iso.sumpt/ptc.pt()<e.4

[E) TreeProducer.py

4. Flat trees o it oy

[[E) analysis.py]

* For producing flat trees specific to analysis B selection.py
for the moment still using heppy S e B
https://github.com/HEP-FCC/FCCAnalyses/

source,

sel_electrons,
sel_muens,

sel_photons,

e Within heppy create an analysis directory
. . dressed_electrons,
that contains always the same files: dressed mions,

dressed_photons,

(o)}
—i
By
©
—i
S~
N
(@]
-7
=
o
=
(]
(S
(1)
—
[ty
i)
(%2
=
©
=
©
QO
&)
L

. jets_1e,
e analyS|Spy match_electron_jets,
. jets_ncelectron,
® dEﬁ nes selected_lights,

. selected_bs,
the list of modules to be run SeBactalivc o

. . selected_taus,
the list of samples over which to run i
(the inputs file lists and cross sections etc... 1i

selection,

centrally defined and supported from step 2. reco_tree,
1)

4. Flat trees

* For producing flat trees specific to analysis
for the moment still using heppy
https://github.com/HEP-FCC/FCCAnalyses/

e Within heppy create an analysis directory
that contains always the same files:

* selection.py:

* defines

the list of pre-selections
(optional and can also be done in
the TreeProducer)

) TreeProducer.py
E) _init__.py

£) analysis.py

[) selection.py]

class Selection(Analyzer):

def

def

beginLoop(self, setup):
super(Selection, self).beginLoop(setup)

self.counters.addCounter('cut_flow')

self.counters['cut_flow'].register('All events')

self.counters['cut_flow'].register('At least one Z -> mu+ mu- candidates')

process(self, event):

self.counters['cut_flow'].inc('All events"')

zeds = event.zeds

#select events with at least one Z -> mu+ mu- candidates
if (len(zeds) < 1):
return False
self.counters['cut_flow'].inc('At least one Z -> mu+ mu- candidates')

[[E) TreeProducer.py]

4. Flat trees o it oy

£) analysis.py

* For producing flat trees specific to analysis Bl selection.py
for the moment still using heppy e
https://github.com/HEP-FCC/FCCAnalyses/ self.tree.var(‘nele_recoll’, float)

self.tree.var('nph', float)

e Within heppy create an analysis directory bookParticle(self.tree, 'recoil’)
that contains always the same files: gl s S

bookParticle(self.tree, 'el2')
bookMet(self.tree, 'met')

e TreePrOducer-py: f‘illParticieEself.tr‘ee, ‘zed', zed)

fillMet(self.tree, 'met’, event.met)

(o)}
—i
By
©
—i
S~
N
(@]
-7
=
o
=
(]
(S
(1)
—
[ty
i)
(%2
=
©
=
©
QO
&)
L

* defines
. . . fillLepton(self.tree, ‘'ell', zeds[9].legs[®@])
The variables to be stored in the output file filllepton(self.tree, ‘el2’, zeds[o].legs[1])

AISO can Compute h|gh Ievel Var'ables self.tree.fill('nbjets' , len(event.selected_bs))
self.tree.fill('ncjets' , len(event.selected_cs)) 11
Can aISO apply some CUtS self.tree.fill('ntaujets' , len(event.selected_taus))

self.tree.fill('nljets' , len(event.selected_lights))

Branch: masterv FCCAnalyses / FCCeeAnalyses /

4 Flat tre e S This branch is 9 commits ahead of clementhelsens:master.
[

"+ clementhelsens updates for FCCSW WS

¢ AnalySiS ﬂOW iS fU”y reprOdUCible B ZH_Zee updates for FCCSW WS
B ZH_Zmumu updates for FCCSW WS

* Outputs must be stored on the eos FCC ep— frst FCCee analysis
B _init_.py add FCCeeAnalyses dir

» [eos/experiments/fcc/ee/analyses/

* Fully adapted for FCC-ee, also have a test example with
TDataFrame as backend
* For the tutorial tomorrow we will use the outputs of this step

FCC analysis framework

12

5. Flat Tree analyser

* https://github.com/HEP-FCC/FlatTreeAnalyzer

* From the files produced in 4
* Plots and histograms for final analysis for different selections
* Templates on github so that we can fully reproduce the results

* Selection based on variables available in output tree
* Possible to add new variables in the plots/output trees

variable list
variables = {
g L8 {
“mz" {
“ptmu_1" {
“ptmu_2" +f
"“mrecoil” :{"
“ptrecoil” :{
“met_pt" {
“met_sumet”:{"

“name" :
“name" :|"
“name"
"name"
name" :|"
“name" :|*
"name" :
name" :|*

“zed pt" “title
zed m" "title
:(“mul_pt" eitle®:"
:("mu2_pt" el Ele
DR “‘title":"
FECORENIEN “title" : "
“met_pt" "ritle®:
met_sumet”| "title":

Sorp ATE {2F FGe¥] ™, “hin®:150; " xmin":0, " xmax” :300};

o {Z) PGe¥]T, bin": 125, "xminT: 0, "xmax" : 250 ,
p_{T}"{#mu, max} [GeV]","bin":150,"xmin":0,"xmax":150},
p {T}"{#mu, min} [GeV]","bin":150,"xmin":0,"xmax":150},
m_{Recoil} [GeV]","bin":100,"xmin":50,"xmax":150},
p_{T}"{Recoil} [GeV]","bin":125,"xmin":0,"xmax":250},
“met p_{T} [GeV]","bin":150,"xmin":0,"xmax":150},

“met sum E_{T} [GeV]","bin":125,"xmin":0,"xmax":250},

(o)}
—i
By
©
—i
S~
N
(@]
-7
=
o
=
(]
(S
(1)
—
[ty
i)
(%2
=
©
=
©
QO
&)
L

=
w
| S—

5. Flat Tree analyser

* https://github.com/HEP-FCC/FlatTreeAnalyzer
* From the files produced in 4
* Plots and histograms for final analysis for different selections
* Templates on github so that we can fully reproduce the results

* Defines the signal(s) and backgrounds (the name of the dataset is the same
as before

(o)}
—i
By
©
—i
S~
N
(@]
-7
=
o
=
(]
(S
(1)
—
[ty
i)
(%2
=
©
=
©
QO
&)
L

gignal_groups = collections.OrderedDict()
signal groups['ZH'] = ['p8 _ee ZH ecm240']

[N
o

background groups = collections.OrderedDict()
background groups['WW'] = ['p8 ee WW ecm240']
background groups['ZZ'] = ['p8 ee ZZ ecm240']

5. Flat Tree analyser

* https://github.com/HEP-FCC/FlatTreeAnalyzer
* From the files produced in 4

* Plots and histograms for final analysis for different selections
* Templates on github so that we can fully reproduce the results

* Defines the selections based on the variables available in the flat tree

(o)}
—
By
(@)
—
S~
N
o
v
o
o
=
(]
€
(1]
—
[ty
i)
(%2

base pre-selections

selbase = 'recoil m>10.'

selopt = 'zed pt<65. && zed m>70. && zed m<100. && mul pt<75.&& mu2_pt<50. && met pt<50.°

selbb = 'nbjets==2"

seltautau = 'ntaujets==2"

selWhadWhad = 'nljets+ncjets==4"

selWhadWlep = 'nljets+ncjets==2 && ((nele==1 & nmu_recoil==0) || (nele==0 && nmu_recoil==1))’
selWlepWlep = '(nele==2 && nmu_recoil==0) || (nele==0 && nmu_recoil==2) || (nele==1 & nmu_recoil==1)"
selWW = selWhadwWhad + '||' + selWhadWlep + "||" + selWlepWlep

5. Flat Tree analyser

* https://github.com/HEP-FCC/FlatTreeAnalyzer
* From the files produced in 4
* Plots and histograms for final analysis for different selections
* Templates on github so that we can fully reproduce the results

* Add the selections you want to run and run
* Plots and tree will have selN, with N the index of the selection 0,1,2,etc...

add list of event selections here if needed...

selections = collections.OrderedDict()
selections['ZH'] = []

(o)}
—i
By
©
—i
S~
N
(@]
-7
=
o
=
(]
(S
(1)
—
[ty
i)
(%2
=
©
=
©
QO
&)
L

selections['ZH'] .append(selbase)
selections['ZH'] .append(selopt)
selections['ZH"'] .append(selbb)
selections['ZH'] .append(seltautau)
selections['ZH"'].append(selWhadWhad) 16)
selections['ZH"'] .append(selWhadWlep)
selections['ZH'] .append(selWlepWlep)
]

selections['ZH"'].append(selWW)

5. Flat Tree analyser

events / 1 GeV

100

80

60

base pre-selections

selbase = 'recoil _m>10."

selopt = 'zed pt<65. && zed m>70.
«10° FCC-ee Simulation (Delphes)
HII4—

(s = 240.0 GeV ——,]
- L=5 ab" - 77 b
—ete = ZH —e'e +X -

60 70 80 90 100 110 120 130 140 150
mRecoiI [GeV]

&& zed m<100. && mul pt<75.&& mu2 pt<50. && met pt<50.°

FCC-ee Simulation (Delphes)

ete’ = ZH —e'e +

3 SARRERARE RS .
S

~ V§=24¢3.06ev -

L=5ab’ m

g 2z

&

g

s

20 40 60 80 100 120
P2 (GeV]

FCC-ee Simulation (Delphes)
T T T
(s = 240.0 GeV
L=5ab’

ete’ = ZH —e'e + X

events /1 GeV

pe- ™ [GeV]

events / 2 GeV

events /1 GeV

e
Vs =240.0 GeV

FCC-ee Simulation (Delphes)

200 250
m, [GeV]

Vs =240.0 GeV

FCC-ee Simulation (Delphes)
T T

T
—2ZH

. ww
. zz

P [GeV]

events /1 GeV

FCC-ee Simulation (Delphes)
I

alysis framework 02/10/19

——
Vs = 240.0 GeV

L=5ab"’

ete’ = ZH — e

20

40

T+ X

60

T
—ZH

| ww
. zz

80

100 120
met p. [GeV]

5. Flat Tree analyser

base pre-selections

events / 1 GeV

selbase = 'recoil_m>10.'
selopt = 'zed pt<65. && zed m>70. && zed m<100. && mul pt<75.&& mu2 pt<50. && met pt<50.°
(o)]
N
«10° FCC-ee Simulation (Delphes) FCC-ee Simulation (Delphes) =)
100HII|IIII|IIIIIIIIIIIIIIIIIIIIIIII|-||IIIIIIIIIIIII-|— % :III: R
[Vs =240.0 GeV _——] ©850001™ 5 = 240.0 Gev —— B S
L L=5ab" . zz . > C L=5ab"’ . zz] =
80~ e*te’ = ZH — e'e + X - 630000 ote” > ZH — e*e + X - S
- 1 ® n] :
: : 25000 = 5
| ;. Y
60~ 7] - . 2
i] 20000—] =
- 4 I~ n ©
- T =
C] (e
15000] S
- — Lo
10000(— -
50001 - 18]
0 60 70 80 90 100 110 120 130 140 150 gO 60 70 80 90 100 110 120 130 140 150

IT'F{ecoil [GGV] mRecoiI [GeV]

5. Flat Tree analyser

base pre-selections

events / 1 GeV

selbase = 'recoil m>10."'
selbb = 'nbjets==2"
= ' n i ==7"'
seltautau L s Bk 2 FCC-ee Simulation (Delphes) FCC-ee Simulation (Delphes) o
> [TrrT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT1] > :\ TTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTTT ‘ TTT \: H
[} L I] @ L JE—]
«10° FCC-ee Simulation (Delphes) 2 6000 |s = 240.0 Gev — | 2 850F {s=2400Gev S, 3 S
100 T[T T I T TT T T [TT T T [TT T [T T T [T T T T[T I T T[T T T T[T 1T E I L=5ab’ . zz] %: EL=5ab" N zz E Q
L s —_ 4 8 gool €%8 = ZH —e'e + X B g 3001 e’ —ZH —e'e +X - S
s =240.0 GeV -WW i ® L] ® r]
L L=5ab" 4 E] 250 . o
B zZz 4000f . g 1 <
80— e+e- - ZH - e+e- + X] C] 200 - g
i T 3000/] - . J]
B T L] 150] E
L i r] r] &
L] - g Y
60— - 2000 . 100 = 2
- . r] .] 2
L] 1000} - sof- E =
- B r] =
r] r] (e
%760 70 80 90 100 110 120 130 140 150 9060 70 80 90 100 110 120 130 140 150 8
Mpecor [GeV] Mpecon [GEV] =
2-bjets 2-taus 19]

60 70 80 90 100 110 120 130 140 150
IT'F{ecoil [GGV]

FCC-ee events

* Generated 30M each of ZZ, WW and ZH with Pythia8 and processed
them through IDEA Delphes card in FCCSW

Home About Contact 100TeV FCC Physics 27TeV HE-LHC Physics Full Simulation FCChh FCCee Physics Stat
Delphes FCCee Physic events v0.1

0‘ Search for names..

NO NAME NEVENTS NWEIGHTS NFILES NBAD NEOS SIZE (GB) OUTPUT PATH MAIN PROCESS FINAL STATES CROSS SECTION (PB)
1 p8_ee_ZH_ecm240 29,850,000 0 2985 0 2985 125.57 /eos/experiment/fcc/ee/generation/DelphesEvents/fcc_v01/p8_ee_ZH_ecm240/ ZH ecm=240GeV inclusive decays 0.201037
2 p8_ee_ZZ_ecm240 29,880,000 0 2988 0 2988 96.24 /eos/experiment/fcc/ee/generation/DelphesEvents/fcc_v01/p8_ee_ZZ_ecm240/ ZZ ecm=240GeV inclusive decays 1.35899
3 p8_ee_WW_ecm240 29,630,000 0 2963 0 2963 91.49 /eos/experiment/fcc/ee/generation/DelphesEvents/fcc_v01/p8_ee_WW_ecm240/ WW ecm=240GeV inclusive decays 16.4385

4 total 89,360,000 0.0 8,936 0.0 8,936.0 313.30

Conclusions

* We provided a simple, highly modular framework for performing fast
detector simulation

* Integrated in MG5 suite and in the FCCSW framework and can be used for
FCC and HE-LHC studies

* Can be used and configured for:
* quick phenomenological studies
* as an alternative for full-simulation if accurately tuned

(o)}
—i
By
©
—i
S~
N
(@]
-7
=
o
=
(]
(S
(1)
—
[ty
i)
(%2
=
©
=
©
QO
&)
L

* Reproducibility exists, but could be improved

N
=

* Already ~25 analyses using this workflow

