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Abstract

Machine learning has played an important role in the analysis of high-

energy physics data for decades. The emergence of deep learning in 2012

allowed for machine learning tools which could adeptly handle higher-

dimensional and more complex problems than previously feasible. This

review is aimed at the reader who is familiar with high energy physics

but not machine learning. The connections between machine learning

and high energy physics data analysis are explored, followed by an

introduction to the core concepts of neural networks, examples of the

key results demonstrating the power of deep learning for analysis of

LHC data, and discussion of future prospects and concerns.

1

ar
X

iv
:1

80
6.

11
48

4v
1 

 [h
ep

-e
x]

  2
9 

Ju
n 

20
18

OPTIMIZATION AND LHC PHYSICS



 5

Deep Learning and Its

Application to LHC Physics

Dan Guest,
1
Kyle Cranmer,

2
and Daniel

Whiteson
1

1Department of Physics and Astronomy, University of California, Irvine,
California 92697, USA
2Physics Department, New York University, New York, NY 10003, USA

Annu. Rev. Nucl. Part. Sci. 2018. 68:1–22

https://doi.org/10.1146/annurev-nucl-
101917-021019

Copyright c� 2018 by Annual Reviews.
All rights reserved

Keywords

deep learning, LHC, machine learning, particle physics

Abstract

Machine learning has played an important role in the analysis of high-

energy physics data for decades. The emergence of deep learning in 2012

allowed for machine learning tools which could adeptly handle higher-

dimensional and more complex problems than previously feasible. This

review is aimed at the reader who is familiar with high energy physics

but not machine learning. The connections between machine learning

and high energy physics data analysis are explored, followed by an

introduction to the core concepts of neural networks, examples of the

key results demonstrating the power of deep learning for analysis of

LHC data, and discussion of future prospects and concerns.

1

ar
X

iv
:1

80
6.

11
48

4v
1 

 [h
ep

-e
x]

  2
9 

Ju
n 

20
18

OPTIMIZATION AND LHC PHYSICS

simulation. In a related approach, de Olivereira et al. find similar success simulating jet

images (86). Future simulation tools built on GANs may provide important speed boosts

for the slower elements of the simulation chain, or they may be sophisticated enough to

provide end-to-end simulations.

The resulting network evaluation is much less computationally demanding than the low-

level simulation, and can be viewed as a non-parametric fast simulation. The promise of this

approach to mitigate the computational burden for simulation has been called out in the

strategic planning for HL-LHC software e↵orts (87, 88). See Refs. (79–84) for alternative

approaches to fast simulation.

2.5. Impact

Taken together, the new tools made possible by deep learning promise to make a significant

impact on high-energy physics. The specific examples above – mass resconstruction, jet

substructure and jet-flavor classification – are important benchmarks and long-standing

challenges. The significant improvements o↵ered by deep learning in these areas support

the claim that many areas of LHC data analysis su↵er from long-standing sub-optimal

feature engineering, and deserve re-examination.

3. CONCERNS

3.1. What Is the Optimization Objective?

A challenge of incorporating machine learning techniques into HEP data analysis is that

tools are often optimized for performance on a particular task that is several steps re-

moved from the ultimate physical goal of searching for a new particle or testing a new

physical theory. Moreover, some tools are used in multiple applications, which may have

conflicting demands. For instance, a deep learning jet flavor-tagging algorithm might be

used for searches for supersymmetry as well as precision measurements of the Higgs sector,

which may have di↵erent needs with respect to balancing signal e�ciency and background

rejection.

These considerations are further complicated by the fact that the sensitivity to high-

level physics questions must account for systematic uncertainties, which involve a nonlinear

trade-o↵ between the typical machine learning performance metrics and the systematic un-

certainty estimates. For example, a new classifier may have a better false-positive rate than

a baseline algorithm, yet simultaneously be more susceptible to systematic mismodeling

between the simulation and the real data. Whether or not this new classifier will improve

the sensitivity for the ultimate high-level physics goal depends on details such as the signal-

to-background ratio, the total number of data, and the size of the systematic uncertainty,

which are not typically included in the classifier training.

Traditionally, HEP physicists have taken these considerations into account through

heuristics and intuition. But as deep learning penetrates into the analysis pipeline, it is

important to revisit these trade-o↵s and attempt to make them explicit to design new loss

functions and learning algorithms that directly optimize for our ultimate physics goals.

For example, in order to to be robust to systematic uncertainties, one can use a classifier

parametrized in terms of the nuisance parameters (38, 82), allowing for major speedups

compared to earlier strategies (89). An alternative approach is to train a network to be

insensitive to the systematic uncertainty, which is achieved either by boosting (90) or by

www.annualreviews.org • Deep Learning and Its Application to LHC Physics 15
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OPTIMIZATION

op·ti·mi·za·tion 
/ˌäptəməˈzāSHən,ˌäptəˌmīˈzāSHən/ 
noun 
noun: optimization; plural noun: optimizations; noun: optimisation; plural noun: optimisations 

1. the action of making the best or most effective use of a situation or resource.

google dictionary
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OPTIMIZATION

Mathematical optimization (alternatively spelled optimisation) or 
mathematical programming is the selection of a best element (with 
regard to some criterion) from some set of available alternatives.[1] 

Optimization problems of sorts arise in all quantitative disciplines from 
computer science and engineering to operations research and 
economics, and the development of solution methods has been of 
interest in mathematics for centuries.[2]

1. "The Nature of Mathematical Programming Archived 2014-03-05 at the Wayback Machine," Mathematical Programming 
Glossary, INFORMS Computing Society.

2. ^ Du, D. Z.; Pardalos, P. M.; Wu, W. (2008). "History of Optimization". In Floudas, C.; Pardalos, P. (eds.). Encyclopedia 
of Optimization. Boston: Springer. pp. 1538–1542.

wikipedia

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Mathematics
http://glossary.computing.society.informs.org/index.php?page=nature.html
https://web.archive.org/web/20140305080324/http://glossary.computing.society.informs.org/index.php?page=nature.html
https://en.wikipedia.org/wiki/Wayback_Machine
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(a) Original dataset: MNIST digits

(b) Training data: Mixture of digits

(c) Independent component analysis

(d) Non-negative matrix factorization

(e) Linearly constrained Bayesian matrix factorization

Figure 4: Data and results of the analyses of an image separation problem. a) TheMNIST digits data
(20 examples shown) used to generate the mixture data. b) The mixture data consists of 4000 images
of two mixed digits (20 examples shown). c) Sources computed using independent component
analysis (color indicate sign). d) Sources computed using non-negative matrix factorization. e)
Sources computed using linearly constrained Bayesian matrix factorization (details explained in the
text).

edges. Two sources stand out: One is a black blob of approximately the same size as the digits, and
another is an all white feature, which are useful for adjusting the brightness.

5 Conclusions

We presented a linearly constrained Bayesian matrix factorization method as well as an inference
procedure for this model. On an unsupervised image separation problem, we have demonstrated that
the method finds sources that have a clear an interpretable meaning. As opposed to ICA and NMF,
our method finds sources that visually resemble handwritten digits.

We formulated the model in general terms, which allows specific prior information to be incorpo-
rated in the factorization. The Gaussian priors over the sources can be used if knowledge is available
about the covariance structure of the sources, e.g., if the sources are known to be smooth. The con-
straints we used in our experiments were separate forA andB, but the framework allows bilinearly
dependent constraints to be specified, which can be used for example to specify constraints in the
data domain, i.e., on the productAB.

As a general framework for constrained Bayesian matrix factorization, the proposed method has
applications in many other areas than blind source separation. Interesting applications include blind
deconvolution, music transcription, spectral unmixing, and collaborative filtering. The method can
also be used in a supervised source separation setting, where the distributions over sources and
mixing coefficients are learned from a training set of isolated sources. It is an interesting challenge
to develop methods for learning relevant constraints from data.
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are connected to (mapped onto) minima 

by solutions to the multidimensional 

equation 

ar/as = -VF(r) (1) 

where the vector r comprises all 3N 
atomic coordinates and where s is a 
virtual "time coordinate" for the de- 
scent (4). Starting at any randomly cho- 
sen r(s = 0), the solution r(s) as s --> 

locates the requisite minimum. The dot- 
ted lines in Fig. 1 outline the regions 
containing all points that map onto the 
same interior minimum. Notice from 

Fig. 1 that boundaries separating neigh- 
boring regions pass through saddle 

points on the (I hypersurface. 
Having introduced this division of the 

configuration space, a primary goal will 
be to describe motion within and transi- 
tions between the regions and how that 
motion depends on temperature. 

Computer Simulation 

The complicated topography of the FI 
surface (Fig. 1) profoundly influences 

experimental measurements for the sub- 
stance under consideration. But such 
measurements have very limited capaci- 
ty to determine the topography and to 
follow details of the system's dynamical 
motion across the "eI-scape." Digital 
computer simulation offers an insightful 
alternative, at least for small (and one 

hopes representative) collections of 102 

to 103 atoms. Our own work in this area 
has relied on a computer to solve classi- 
cal Newtonian equations of motion, sub- 

ject to suitable initial and boundary con- 

ditions, with analytical potential func- 

tions that have been selected to repre- 
sent specific materials of interest. As the 
classical dynamical trajectory is being 
generated the computer is required to 

carry out in parallel and frequently an- 

other set of tasks, namely to identify the 

I minimum onto which the instanta- 

neous dynamical configuration would 

map by the steepest-descent construc- 
tion (Eq. 1). This parallel activity sup- 
plies a running record of the fiducial 
minima over whose regions the Newto- 
nian dynamics takes the system. This 

would be analogous to a listing of names 
of counties passed over during a trans- 
continental flight from New York to San 
Francisco. 

If initial conditions for the dynamics 
so decree, the system can be trapped at 

low total energy in the neighborhood of a 

single minimum. In that event the map- 
ping yields a consistently monotonous 

result. But at higher energy, escape over 
saddle points becomes possible and the 

984 

running mapping onto minima reveals 
kinetic details about transitions between 

contiguous regions. Figures 2 and 3 pro- 
vide a case in point. They refer to a 

computer simulation for an amorphous 
alloy at low temperature (174 K) com- 

prising 120 nickel atoms and 30 phospho- 
rous atoms. Figure 2 shows how the 

potential energy per atom, 4, varies with 
time during a 3.1-picosecond interval, 
along the classical dynamical trajectory 
executed by this 150-atom system in its 
450-dimensional configuration space. 
The thermal motion of the atoms in this 
solid deposit consists primarily of har- 
monic motion; but more than that is 

Fig. 1. Schematic representation of the poten- 
tial energy surface for an N-atom system. 
Minima are shown as filled circles and saddle 

points as crosses. Potential energy is constant 

along the continuous curves. Regions belong- 
ing to different minima are indicated by 
dashed curves. 

-5.35 

-5.40 

-5.45 

-5.50 

Step number 

Fig. 2. Time variation of (), the potential 
energy per atom, in a 150-atom nickel-phos- 
phorous amorphous deposit, as simulated by 
computer. Temperature is 174 K. The 104 

computer time steps shown correspond to 3.1 
picoseconds of elapsed time. The quantity 4) 
is shown on a reduced basis; the energy unit 
used is 1.855 kilocalories per mole. 

present. Figure 3 shows, for exactly the 
same interval, the value of () at the 

nearby potential energy minima. Obvi- 

ously the system has not merely execut- 
ed vibrations around a single minimum 
but has undergone ten transitions be- 
tween neighboring minima. In this case 
all the minima visited correspond to 

amorphous packings of the given set of 
atoms. 

If the temperature is increased for the 
nickel plus phosphorus system to which 

Figs. 2 and 3 refer, the transition rate 
between regions surrounding distinct 
minima increases dramatically. This 

temperature-dependent rate can be ana- 

lyzed with an Arrhenius plot (logarithm 
of rate versus 1/7) to estimate the mean 
barrier, height. For the few cases that 
have been carefully examined this way, 
the mean barrier height for liquids turns 
out only to be about half of that which 

emerges from a corresponding Arrhenius 

plot for self-diffusion rates. The implica- 
tion is that many transitions "get no- 

where," that is, either involve motion 
into and out of culs-de-sac in the config- 
uration space or must dynamically be 
followed by a surmounting of higher bot- 
tleneck barriers for diffusion to occur. 

Certainly, computer modeling of bulk 
matter involving only 102 to 103 atoms 

requires care in interpretation. Never- 

theless, the modest kinds of mapping-to- 
minima calculations just illustrated ap- 
parently produce several results of gen- 
eral validity. Included among them are 
the following: 

1) Transitions are localized. The 
atomic arrangements for two successive- 

ly visited packings (such as those indi- 
cated in Fig. 3) normally differ only by 
rearrangement of a small set of atoms 
that form a compact grouping in three- 
dimensional space. Most of the material 

present stays put, or at most responds 
elastically to the local rearrangement. 
Evidently, overall restructuring requires 
a sequence of many localized transitions. 

2) The transition rate is an extensive 

quantity, that is, the rate is proportional 
to the system size at least in the macro- 

scopic limit. This feature follows from 

point 1 above. By doubling the size of 
the system (while holding temperature 
and composition fixed), the number of 
sites at which localized transitions could 
occur also doubles. Consequently, the 
mean residence time in any given mini- 
mum region becomes halved. In con- 

junction with results from small-system 
computer simulation, this extensivity re- 

quires truly formidable transition rates 
for macroscopic samples of matter. For 

example, one estimate (2) implies that 1 
mole of liquid argon near its melting 

SCIENCE, VOL. 225 

Potential energy 
landscape

Fitness landscape
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ping yields a consistently monotonous 

result. But at higher energy, escape over 
saddle points becomes possible and the 
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running mapping onto minima reveals 
kinetic details about transitions between 

contiguous regions. Figures 2 and 3 pro- 
vide a case in point. They refer to a 

computer simulation for an amorphous 
alloy at low temperature (174 K) com- 

prising 120 nickel atoms and 30 phospho- 
rous atoms. Figure 2 shows how the 

potential energy per atom, 4, varies with 
time during a 3.1-picosecond interval, 
along the classical dynamical trajectory 
executed by this 150-atom system in its 
450-dimensional configuration space. 
The thermal motion of the atoms in this 
solid deposit consists primarily of har- 
monic motion; but more than that is 

Fig. 1. Schematic representation of the poten- 
tial energy surface for an N-atom system. 
Minima are shown as filled circles and saddle 

points as crosses. Potential energy is constant 

along the continuous curves. Regions belong- 
ing to different minima are indicated by 
dashed curves. 
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Fig. 2. Time variation of (), the potential 
energy per atom, in a 150-atom nickel-phos- 
phorous amorphous deposit, as simulated by 
computer. Temperature is 174 K. The 104 

computer time steps shown correspond to 3.1 
picoseconds of elapsed time. The quantity 4) 
is shown on a reduced basis; the energy unit 
used is 1.855 kilocalories per mole. 

present. Figure 3 shows, for exactly the 
same interval, the value of () at the 

nearby potential energy minima. Obvi- 

ously the system has not merely execut- 
ed vibrations around a single minimum 
but has undergone ten transitions be- 
tween neighboring minima. In this case 
all the minima visited correspond to 

amorphous packings of the given set of 
atoms. 

If the temperature is increased for the 
nickel plus phosphorus system to which 

Figs. 2 and 3 refer, the transition rate 
between regions surrounding distinct 
minima increases dramatically. This 

temperature-dependent rate can be ana- 

lyzed with an Arrhenius plot (logarithm 
of rate versus 1/7) to estimate the mean 
barrier, height. For the few cases that 
have been carefully examined this way, 
the mean barrier height for liquids turns 
out only to be about half of that which 

emerges from a corresponding Arrhenius 

plot for self-diffusion rates. The implica- 
tion is that many transitions "get no- 

where," that is, either involve motion 
into and out of culs-de-sac in the config- 
uration space or must dynamically be 
followed by a surmounting of higher bot- 
tleneck barriers for diffusion to occur. 

Certainly, computer modeling of bulk 
matter involving only 102 to 103 atoms 

requires care in interpretation. Never- 

theless, the modest kinds of mapping-to- 
minima calculations just illustrated ap- 
parently produce several results of gen- 
eral validity. Included among them are 
the following: 

1) Transitions are localized. The 
atomic arrangements for two successive- 

ly visited packings (such as those indi- 
cated in Fig. 3) normally differ only by 
rearrangement of a small set of atoms 
that form a compact grouping in three- 
dimensional space. Most of the material 

present stays put, or at most responds 
elastically to the local rearrangement. 
Evidently, overall restructuring requires 
a sequence of many localized transitions. 

2) The transition rate is an extensive 

quantity, that is, the rate is proportional 
to the system size at least in the macro- 

scopic limit. This feature follows from 

point 1 above. By doubling the size of 
the system (while holding temperature 
and composition fixed), the number of 
sites at which localized transitions could 
occur also doubles. Consequently, the 
mean residence time in any given mini- 
mum region becomes halved. In con- 

junction with results from small-system 
computer simulation, this extensivity re- 

quires truly formidable transition rates 
for macroscopic samples of matter. For 

example, one estimate (2) implies that 1 
mole of liquid argon near its melting 
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motion across the "eI-scape." Digital 
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alternative, at least for small (and one 

hopes representative) collections of 102 

to 103 atoms. Our own work in this area 
has relied on a computer to solve classi- 
cal Newtonian equations of motion, sub- 

ject to suitable initial and boundary con- 

ditions, with analytical potential func- 

tions that have been selected to repre- 
sent specific materials of interest. As the 
classical dynamical trajectory is being 
generated the computer is required to 

carry out in parallel and frequently an- 

other set of tasks, namely to identify the 

I minimum onto which the instanta- 

neous dynamical configuration would 

map by the steepest-descent construc- 
tion (Eq. 1). This parallel activity sup- 
plies a running record of the fiducial 
minima over whose regions the Newto- 
nian dynamics takes the system. This 
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Certainly, computer modeling of bulk 
matter involving only 102 to 103 atoms 
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minima calculations just illustrated ap- 
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the following: 
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atomic arrangements for two successive- 

ly visited packings (such as those indi- 
cated in Fig. 3) normally differ only by 
rearrangement of a small set of atoms 
that form a compact grouping in three- 
dimensional space. Most of the material 

present stays put, or at most responds 
elastically to the local rearrangement. 
Evidently, overall restructuring requires 
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2) The transition rate is an extensive 

quantity, that is, the rate is proportional 
to the system size at least in the macro- 
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the system (while holding temperature 
and composition fixed), the number of 
sites at which localized transitions could 
occur also doubles. Consequently, the 
mean residence time in any given mini- 
mum region becomes halved. In con- 

junction with results from small-system 
computer simulation, this extensivity re- 

quires truly formidable transition rates 
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minima calculations just illustrated ap- 
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the following: 
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cated in Fig. 3) normally differ only by 
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that form a compact grouping in three- 
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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“The price of metaphor is eternal vigilance."
Norbert Wiener

La condition humaine, René Magritte
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Millions of years of life’s struggle for survival in differen t 
environments have resulted in proteins providing 
diverse, creative and efficient solutions to a wide range of 
problems, from extracting energy from the environment 
to repairing and replicating their own code. Good solu-
tions to biological problems can also be good solutions 
to human problems — proteins are widely used in the 
food, chemicals, consumer products and medical fields. 
Not content with nature’s protein repertoire, however, 
protein engineers are working to extend known protein 
function to new environments or tasks1–4 and to create 
new functions altogether5–7.

Despite major advances, a molecular-level under-
standing of why one protein performs a certain task 
better than another remains elusive. This is perhaps 
not surprising when we remember that a protein often 
undergoes conformational changes during function 
and exists as a dynamic ensemble of conformers that 
are only slightly more stable than their unfolded and 
non-functional states and that might themselves be 
functionally diverse8. Mutations far away from active 
sites can influence protein function9,10. Engineering 
enzymatic activity is particularly difficult because very 
small changes in structure or chemical properties can 
have big effects on catalysis. Thus, predicting the amino 
acid sequence, or changes to an amino acid sequence, 
that would generate a specific behaviour remains a 
challenge, particularly for applications requiring high 
performance (such as an industrial enzyme or a thera-
peutic protein). Unfortunately, where function is con-
cerned, details matter, and we just don’t understand 
the details.

Evolution, however, had no difficulty generating these 
impressive molecules. Despite their complexity and finely 
tuned nature, proteins are remarkably evolvable: they can 
adapt under the pressure of selection by changing their 
behaviour, function and even fold . Protein engineers have 
learned to exploit this evolvability using directed evolution 
— the application of iterative rounds of mutation and 
artificial selection or screening — to generate new pro-
teins. Hundreds of directed evolution experiments have 
revealed the ease with which proteins adapt to new chal-
lenges11. Notable recent examples include a recombinase 
evolved to remove proviral HIV from the host genome 
(providing a new strategy for treating retroviral infec-
tions)12, a cytochrome P450 fatty acid hydroxylase that 
was converted into a highly efficient propane hydroxylase 
(thereby proving that a cytochrome P450 is fully capable of 
hydroxylating small alkanes, even though most propane-
using organisms use structurally and mechanistically  
unrelated enzymes)13, a more than 40 nC increase in the 
thermostability of lipase A (extending its application in 
biocatalysis to a whole new set of environments)14 and a 
variant of green fluorescent protein that tolerates having 
all its leucine residues replaced with a non-natural amino 
acid, trifluoroleucine15. Roger Tsien won the Nobel Prize 
last year for his work on the fluorescent proteins that have 
transformed biological imaging16. Directed evolution had a 
key role by improving many features of fluorescent proteins, 
including emission and excitation properties, quantum  
yield, multimerization state and maturation rate4,17.

Directed evolution has become a common laboratory  
tool for altering and optimizing protein function (as 
well as the function of other biological molecules and 

Division of Chemistry and 
Chemical Engineering, 
210-41, California Institute  
of Technology, Pasadena, 
California, 91125, USA.
e-mails:  
frances@cheme.caltech.edu; 
promero@caltech.edu
doi:10.1038/nrm2805

Evolvability
A measure of the ability of a 
protein to adapt in response  
to mutation and selective 
pressure; for example, the 
frequency of beneficial 
mutations.

Directed evolution
The application of iterative 
rounds of mutation and 
artificial selection or screening 
to alter the properties of 
biological molecules and 
systems

Exploring protein fitness landscapes 
by directed evolution
Philip A. Romero and Frances H. Arnold

Abstract | Directed evolution circumvents our profound ignorance of how a 
protein’s sequence encodes its function by using iterative rounds of random 
mutation and artificial selection to discover new and useful proteins. Proteins can 
be tuned to adapt to new functions or environments by simple adaptive walks 

involving small numbers of mutations. Directed evolution studies have shown how rapidly 
some proteins can evolve under strong selection pressures and, because the entire ‘fossil 
record’ of evolutionary intermediates is available for detailed study, they have provided new 
insight into the relationship between sequence and function. Directed evolution has also 
shown how mutations that are functionally neutral can set the stage for further adaptation.
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Protein sequence space
The space of all possible 
protein sequences arranged 
such that sequences that differ 
by single mutations are 
neighbours.

Adaptive walk
An uphill trajectory on the 
fitness landscape, in which  
no deleterious mutations are 
accepted.

The rougher the landscape, the harder it is for evolution 
to climb. Local optima create traps that evolution can-
not escape from unless a side-step or even a temporary 
decrease in fitness is permitted, or if multiple simultane-
ous mutations enable a jump to a new peak. The easiest 
landscape to climb is one that offers many smooth, uphill 
paths to the desired fitness (the Fujiyama landscape).

This terrestrial landscape analogy should be inter-
preted cautiously, however, because it cannot accurately 
represent the numerous possible paths that evolution 
can take to higher fitness (or the even larger number of 
possible downhill paths). Although it is easy to visualize 
being caught on a local optimum in a three-dimensional 
landscape, a local optimum in protein sequence space  

(in which all possible mutations are deleterious) might 
be rare, unless stability has been compromised and few 
new mutations can be accepted. For example, the intro-
duction of stabilizing mutations can increase a protein’s 
mutational robustness, opening new routes for further 
adaptation28,29.

The vast size of sequence space makes it impossible 
to characterize (or even model) more than a minute 
fraction of this fitness surface. Despite this, several 
important features have emerged from accumulated 
experimental studies. The first is the low overall density  
of functional sequences: the vast majority do not code 
for any functional protein, much less the desired pro-
tein30–32. Another important feature is the uneven 
distribution of functional sequences. Although repre-
senting a very small fraction of all possible sequences, 
functional sequences are often next to other functional 
sequences33–35. Maynard Smith recognized that this fea-
ture was a requirement for evolution by point mutation 
to be successful. Evolution can step one mutation at a 
time only if there is a continuous network of functional 
proteins, otherwise mutation would always lead to lower 
fitness and evolution would stop23. Proteins are in fact 
robust to mutation — a significant fraction of possible 
mutants retain their fold and function36,37.

Whereas natural evolution can discover new pro-
tein functions along circuitous paths that involve many 
neutral or even slightly deleterious mutations, directed 
evolution does not have that luxury. Because the possi-
ble evolutionary paths grow exponentially as mutations 
accumulate and there are too many ways to take neutral 
or deleterious steps that do not ultimately lead uphill, 
directed evolution is largely constrained to moving con-
tinuously uphill in an adaptive walk38. This is often not a 
severe limitation because many interesting proteins are 
accessible by short and simple adaptive walks. Although 
the resulting proteins, or even the mutations, might not 
be the same as those discovered by more convoluted 
paths to the same fitness level, they nonetheless pro-
vide valuable insights into protein function and routes 
of adaptation.

Strategies for directed evolution
Before we describe some of the key lessons that directed 
evolution studies have taught us about protein func-
tion and evolution, we briefly discuss the experimental 
strategy. How the experiment is performed obviously 
influences the outcome and, therefore, the informa-
tion that is extracted from it. Finding a sequence that 
performs a desired function in a vast space of possible 
sequences that is only sparsely populated with func-
tional ones might seem like a daunting task. Inefficient 
searches of this space could take essentially forever and 
the task of the protein engineer is to choose a strategy 
that will reach the objective and do so quickly and easily.  
Starting with a functional protein, directed evolution 
uses repeated generations of mutation to create func-
tional variation and selection of the fittest variants to 
direct the search to higher elevations on the fitness land-
scape. It involves four key steps (FIG. 2). First, identifying 
a good starting sequence; second, mutating this ‘parent’ 

Figure 1 | Protein fitness landscapes. Directed protein evolution traverses a fitness 
landscape in sequence space. This fitness is the measure of how well a given protein 
performs a target function. a | The plot of fitness against sequence creates the landscape 
for evolution. The transition through black–red–orange–yellow represents increasing 
fitness. Although the details of this landscape are unknown, it is believed that most 
sequences do not function (black) and that the rare functional sequences encoding 
natural proteins are clustered near other functional sequences. However, this popular 
three-dimensional representation does a poor job of illustrating the numerous paths 
available to evolution and the numerous sequences in functional regions that do not 
encode functional proteins110. b | Similar to natural protein evolution, directed evolution 
moves along networks of functional proteins that differ by a single amino acid, because 
selection requires a continuous uphill walk and does not permit the fixation of 
non-functional sequences. Epistasis occurs when the effect of one mutation depends  
on the presence of another, which can create landscape ruggedness and local optima. 
Landscapes could range from the rugged ‘Badlands’ landscape (left panel), which is 
nearly impossible to climb by mutational steps, to the ‘Fujiyama’ landscape (right panel), 
in which any beneficial mutation brings the search closer to the optimum27. c  |  The 
presence of local optima might restrict some of the mutational paths uphill (red line). 
However, the large number of alternative routes leaves plenty of adaptive paths to a 
fitness optimum (green line).
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Millions of years of life’s struggle for survival in differen t 
environments have resulted in proteins providing 
diverse, creative and efficient solutions to a wide range of 
problems, from extracting energy from the environment 
to repairing and replicating their own code. Good solu-
tions to biological problems can also be good solutions 
to human problems — proteins are widely used in the 
food, chemicals, consumer products and medical fields. 
Not content with nature’s protein repertoire, however, 
protein engineers are working to extend known protein 
function to new environments or tasks1–4 and to create 
new functions altogether5–7.

Despite major advances, a molecular-level under-
standing of why one protein performs a certain task 
better than another remains elusive. This is perhaps 
not surprising when we remember that a protein often 
undergoes conformational changes during function 
and exists as a dynamic ensemble of conformers that 
are only slightly more stable than their unfolded and 
non-functional states and that might themselves be 
functionally diverse8. Mutations far away from active 
sites can influence protein function9,10. Engineering 
enzymatic activity is particularly difficult because very 
small changes in structure or chemical properties can 
have big effects on catalysis. Thus, predicting the amino 
acid sequence, or changes to an amino acid sequence, 
that would generate a specific behaviour remains a 
challenge, particularly for applications requiring high 
performance (such as an industrial enzyme or a thera-
peutic protein). Unfortunately, where function is con-
cerned, details matter, and we just don’t understand 
the details.

Evolution, however, had no difficulty generating these 
impressive molecules. Despite their complexity and finely 
tuned nature, proteins are remarkably evolvable: they can 
adapt under the pressure of selection by changing their 
behaviour, function and even fold . Protein engineers have 
learned to exploit this evolvability using directed evolution 
— the application of iterative rounds of mutation and 
artificial selection or screening — to generate new pro-
teins. Hundreds of directed evolution experiments have 
revealed the ease with which proteins adapt to new chal-
lenges11. Notable recent examples include a recombinase 
evolved to remove proviral HIV from the host genome 
(providing a new strategy for treating retroviral infec-
tions)12, a cytochrome P450 fatty acid hydroxylase that 
was converted into a highly efficient propane hydroxylase 
(thereby proving that a cytochrome P450 is fully capable of 
hydroxylating small alkanes, even though most propane-
using organisms use structurally and mechanistically  
unrelated enzymes)13, a more than 40 nC increase in the 
thermostability of lipase A (extending its application in 
biocatalysis to a whole new set of environments)14 and a 
variant of green fluorescent protein that tolerates having 
all its leucine residues replaced with a non-natural amino 
acid, trifluoroleucine15. Roger Tsien won the Nobel Prize 
last year for his work on the fluorescent proteins that have 
transformed biological imaging16. Directed evolution had a 
key role by improving many features of fluorescent proteins, 
including emission and excitation properties, quantum  
yield, multimerization state and maturation rate4,17.

Directed evolution has become a common laboratory  
tool for altering and optimizing protein function (as 
well as the function of other biological molecules and 
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Evolvability
A measure of the ability of a 
protein to adapt in response  
to mutation and selective 
pressure; for example, the 
frequency of beneficial 
mutations.

Directed evolution
The application of iterative 
rounds of mutation and 
artificial selection or screening 
to alter the properties of 
biological molecules and 
systems

Exploring protein fitness landscapes 
by directed evolution
Philip A. Romero and Frances H. Arnold

Abstract | Directed evolution circumvents our profound ignorance of how a 
protein’s sequence encodes its function by using iterative rounds of random 
mutation and artificial selection to discover new and useful proteins. Proteins can 
be tuned to adapt to new functions or environments by simple adaptive walks 

involving small numbers of mutations. Directed evolution studies have shown how rapidly 
some proteins can evolve under strong selection pressures and, because the entire ‘fossil 
record’ of evolutionary intermediates is available for detailed study, they have provided new 
insight into the relationship between sequence and function. Directed evolution has also 
shown how mutations that are functionally neutral can set the stage for further adaptation.
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Protein sequence space
The space of all possible 
protein sequences arranged 
such that sequences that differ 
by single mutations are 
neighbours.

Adaptive walk
An uphill trajectory on the 
fitness landscape, in which  
no deleterious mutations are 
accepted.

The rougher the landscape, the harder it is for evolution 
to climb. Local optima create traps that evolution can-
not escape from unless a side-step or even a temporary 
decrease in fitness is permitted, or if multiple simultane-
ous mutations enable a jump to a new peak. The easiest 
landscape to climb is one that offers many smooth, uphill 
paths to the desired fitness (the Fujiyama landscape).

This terrestrial landscape analogy should be inter-
preted cautiously, however, because it cannot accurately 
represent the numerous possible paths that evolution 
can take to higher fitness (or the even larger number of 
possible downhill paths). Although it is easy to visualize 
being caught on a local optimum in a three-dimensional 
landscape, a local optimum in protein sequence space  

(in which all possible mutations are deleterious) might 
be rare, unless stability has been compromised and few 
new mutations can be accepted. For example, the intro-
duction of stabilizing mutations can increase a protein’s 
mutational robustness, opening new routes for further 
adaptation28,29.

The vast size of sequence space makes it impossible 
to characterize (or even model) more than a minute 
fraction of this fitness surface. Despite this, several 
important features have emerged from accumulated 
experimental studies. The first is the low overall density  
of functional sequences: the vast majority do not code 
for any functional protein, much less the desired pro-
tein30–32. Another important feature is the uneven 
distribution of functional sequences. Although repre-
senting a very small fraction of all possible sequences, 
functional sequences are often next to other functional 
sequences33–35. Maynard Smith recognized that this fea-
ture was a requirement for evolution by point mutation 
to be successful. Evolution can step one mutation at a 
time only if there is a continuous network of functional 
proteins, otherwise mutation would always lead to lower 
fitness and evolution would stop23. Proteins are in fact 
robust to mutation — a significant fraction of possible 
mutants retain their fold and function36,37.

Whereas natural evolution can discover new pro-
tein functions along circuitous paths that involve many 
neutral or even slightly deleterious mutations, directed 
evolution does not have that luxury. Because the possi-
ble evolutionary paths grow exponentially as mutations 
accumulate and there are too many ways to take neutral 
or deleterious steps that do not ultimately lead uphill, 
directed evolution is largely constrained to moving con-
tinuously uphill in an adaptive walk38. This is often not a 
severe limitation because many interesting proteins are 
accessible by short and simple adaptive walks. Although 
the resulting proteins, or even the mutations, might not 
be the same as those discovered by more convoluted 
paths to the same fitness level, they nonetheless pro-
vide valuable insights into protein function and routes 
of adaptation.

Strategies for directed evolution
Before we describe some of the key lessons that directed 
evolution studies have taught us about protein func-
tion and evolution, we briefly discuss the experimental 
strategy. How the experiment is performed obviously 
influences the outcome and, therefore, the informa-
tion that is extracted from it. Finding a sequence that 
performs a desired function in a vast space of possible 
sequences that is only sparsely populated with func-
tional ones might seem like a daunting task. Inefficient 
searches of this space could take essentially forever and 
the task of the protein engineer is to choose a strategy 
that will reach the objective and do so quickly and easily.  
Starting with a functional protein, directed evolution 
uses repeated generations of mutation to create func-
tional variation and selection of the fittest variants to 
direct the search to higher elevations on the fitness land-
scape. It involves four key steps (FIG. 2). First, identifying 
a good starting sequence; second, mutating this ‘parent’ 

Figure 1 | Protein fitness landscapes. Directed protein evolution traverses a fitness 
landscape in sequence space. This fitness is the measure of how well a given protein 
performs a target function. a | The plot of fitness against sequence creates the landscape 
for evolution. The transition through black–red–orange–yellow represents increasing 
fitness. Although the details of this landscape are unknown, it is believed that most 
sequences do not function (black) and that the rare functional sequences encoding 
natural proteins are clustered near other functional sequences. However, this popular 
three-dimensional representation does a poor job of illustrating the numerous paths 
available to evolution and the numerous sequences in functional regions that do not 
encode functional proteins110. b | Similar to natural protein evolution, directed evolution 
moves along networks of functional proteins that differ by a single amino acid, because 
selection requires a continuous uphill walk and does not permit the fixation of 
non-functional sequences. Epistasis occurs when the effect of one mutation depends  
on the presence of another, which can create landscape ruggedness and local optima. 
Landscapes could range from the rugged ‘Badlands’ landscape (left panel), which is 
nearly impossible to climb by mutational steps, to the ‘Fujiyama’ landscape (right panel), 
in which any beneficial mutation brings the search closer to the optimum27. c  |  The 
presence of local optima might restrict some of the mutational paths uphill (red line). 
However, the large number of alternative routes leaves plenty of adaptive paths to a 
fitness optimum (green line).
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synthetic sequences
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environmental,
industrial or energy uses

Sequence diversification

Functional assay

Application

Fittest
sequences

to create a library of variants; third, identifying variants 
with improved function and last, repeating the process 
until the desired function is achieved. There are many 
options for the implementation of each step, the choice 
of which can greatly affect both the efficiency and the 
endpoint of an evolutionary search.

Directed evolution (and, indeed, natural evolution) 
relies on the ability of proteins to function over a wider 
range of environments or carry out a wider range of 
functions than might be biologically relevant at a given 
time and therefore selected for. This ability to tolerate 
a non-natural environment or to exhibit ‘promiscuous’ 
functions at some minimal level provides the jumping-
off point for optimization towards that new goal. A good 
parent protein for directed evolution, therefore, exhibits  
enough of the desired function that small improve-
ments (expected from a single mutation) can be reliably 
discerned in a high-throughput screen38. It is also easy 
to work with and sufficiently stable to accommodate  
multiple, potentially destabilizing, mutations if the 
target function is some other property. Some proteins 
are much more evolvable than others11,29,39,40. Possible 
molecular mechanisms that contribute to evolvability 
have been discussed, including the key role of the chemi-
cal mechanism in enzyme functional evolution41,42 and 
the idea that evolvable proteins exist in multiple closely 
related but functionally diverse conformations, the dis-
tribution of which is easily altered by mutation8. These 
ideas, however, are still largely speculative, and little 
other than the ability to accept mutations29,43 has been 
conclusively shown in laboratory evolution experiments  
to contribute directly to allowing one protein to adapt to  
a new challenge more readily than another protein. A 
good heuristic indicator of a protein family’s evolvabil-
ity is its natural functional diversity40,44. Proteins that 
have adapted to exhibit a range of functions across their 
family, for example members of an enzyme family that 
accepts a wide range of substrates (although individual 
enzymes in the family might be specific) are likely to be 
adaptable in the laboratory.

The next step is to create a library of variants. As 
screening is often the most difficult experimental step, 
the library is usually created to generate the highest prob-
ability of finding improved proteins given the screening 
capability. Because most mutations are deleterious and 
multiple mutations frequently inactivate proteins (see 
below), this usually involves a low mutation rate (one or 
two amino acid substitutions per gene). If screening is 
not difficult (for example, there is a good genetic selec-
tion), then the library can be constructed to generate 
the largest potential improvement. This might mean a 
slightly higher mutation rate45. In either case, mutations 
can be introduced randomly1 or, if structural or mecha-
nistic information is available, they can be made in a 
more directed manner46–48 in an effort to increase the 
frequency of improved proteins and reduce the load in 
the next step.

Screening (with high-throughput functional assays) 
or selection (for example, a genetic selection in which 
hosts with improved proteins outcompete the others) is 
used to identify the library members improved in the 

target property. A good screen or selection accurately 
assesses the target properties. The rule ‘you get what 
you screen for’ is always useful to remember — screen-
ing (or selecting) for something else is risky49. It is also 
important not to demand too much improvement in 
a single generation. The hurdle must be tuned to the 
screening capacity and should usually be no greater 
than the improvement that can be provided by a single  
mutation. If the desired function is beyond what a  
single mutation can accomplish, the problem can be bro-
ken down into a series of smaller ones that can be solved 
by the accumulation of single mutations, for example by 
gradually increasing the selection pressure or evolving 
against a series of intermediate challenges13. The process 
of mutation and selection is repeated until the fitness 
objective is met; the number of iterations required obvi-
ously depends on the starting fitness and the improvement  
that can be achieved in each round, but is often only five 
to ten generations.

Mutational steps. An evolutionary search relies on 
the presence of functional diversity in a population, 
which is the result of underlying genetic variation. 
At the molecular level, this genetic variation can take 
many forms; for example, point mutations, insertions,  
deletions, recombination and circular permutation50–52. 

Figure 2 | Overview of directed evolution. The objective 
of directed evolution is to create a specific protein function 
through successive rounds of mutation and selection, 
starting from a parent protein with a related function. 
There are numerous options for implementing each step  
in the process, the choice of which can greatly affect  
the efficiency and success of the protein sequence 
optimization. A parent sequence (or sequences) is chosen 
based on its perceived proximity to the desired function 
and its evolvability. This parent sequence is then mutated 
to form a library of new sequences (error-prone PCR or 
other methods can be used to incorporate mutations 
randomly, recombination can be used to introduce 
mutations from other functional sequences or mutation 
sites can be chosen based on functional and/or structural 
information). These mutated sequences are evaluated  
for their ability to perform the desired function using a 
high-throughput screen or artificial selection. The fittest 
sequence (or sequences) is used as the parent for the next 
round of directed evolution, and this process is repeated 
until the engineering objective is met (usually after five  
to ten generations).
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Knowing howprotein sequencemaps to function (the “fitness land-
scape”) is critical for understanding protein evolution as well as for
engineering proteins with new and useful properties. We demon-
strate that the protein fitness landscape can be inferred from exper-
imental data, using Gaussian processes, a Bayesian learning
technique. Gaussian process landscapes can model various protein
sequence properties, including functional status, thermostability,
enzyme activity, and ligand binding affinity. Trained on experimen-
tal data, these models achieve unrivaled quantitative accuracy. Fur-
thermore, the explicit representation of model uncertainty allows
for efficient searches through the vast space of possible sequences.
We develop and test two protein sequence design algorithms mo-
tivated by Bayesian decision theory. The first one identifies small
sets of sequences that are informative about the landscape; the
second one identifies optimized sequences by iteratively improving
the Gaussian process model in regions of the landscape that are
predicted to be optimized. We demonstrate the ability of Gaussian
processes to guide the search through protein sequence space by
designing, constructing, and testing chimeric cytochrome P450s.
These algorithms allowed us to engineer active P450 enzymes that
are more thermostable than any previously made by chimeragene-
sis, rational design, or directed evolution.

protein engineering | recombination | machine learning | experimental
design | active learning

In the mapping of protein sequence to protein behavior, the
phenotype can be envisioned as a surface, or landscape, over the

high-dimensional space of possible sequences (1). This “fitness
landscape” could describe how the protein contributes to organ-
ismal fitness, or it may represent a biophysical property, such as
stability, enzyme activity, or ligand binding affinity. The structure
of this surface describes the spectrum of possible phenotypes as
well as the mutational accessibility among them and therefore
strongly influences protein evolution. This surface is also the ob-
jective function for protein engineering, which seeks to identify
protein sequences that are highly optimized for a given property or
set of properties.
Identifying such optimized sequences is extremely challenging

for several reasons. First, the space of possible protein sequences is
incomprehensibly large and will never be searched exhaustively by
any means, naturally, in the laboratory, or computationally (2, 3).
Second, within this vast space, functional proteins are extremely
scarce, with estimates that range from a high of 1 in 1011 to as little
as 1 in 1077 (4, 5). Of the sequences that are functional, most have
poor fitness and their numbers decrease exponentially with higher
levels of fitness (6, 7). Thus, highly fit sequences are vanishingly
rare and overwhelmed by nonfunctional and mediocre sequences.
Computational protein engineering uses models of protein func-

tion to guide a search for optimized sequences. These models typi-
cally contain an atomic structural representation of a protein and
energy-based scoring functions to quantify the target function (8, 9).
Despite recent progress, these methods have limited utility because
they cannot reliably rank the performance of individual sequences.
In general, the factors that make one protein perform better than
another are complex and largely unknown. A major challenge for

computational protein engineering is finding models that accurately
describe the mapping from sequence to function (10).
Here, we introduce a class of models for protein function that

infer the fitness landscape directly from experimental data, using
Gaussian process regression, a technique that has gained recent
popularity in machine learning, where it falls into the broader class
of kernel methods (11, 12). The kernel function can describe the
covariance structure of the fitness landscape by specifying how the
properties of pairs of sequences are expected to covary. We chose
a structure-based kernel function inspired by the simple principle
that sequences with similar structures are more likely to have
similar properties. The Gaussian process models provide a proba-
bilistic description of the protein fitness landscape, including the
mean and variance of the fitness of any sequence. Importantly, a
sequence’s variance provides a measure of the model’s un-
certainty, which can be used to guide the search through sequence
space using concepts from Bayesian decision theory.
We develop and demonstrate the utility of Gaussian process

landscapes, using cytochrome P450s made by recombination of two
or more (homologous) parent enzymes.We show these models can
accurately describe P450 properties such as binary functional status
and thermostability. Because they are trained directly on experi-
mental data, the models implicitly account for all factors that
contribute to a specific property, including those that are unknown.
Using the Gaussian process model’s uncertainty as a guide, we
develop two algorithms that are able to efficiently explore the
protein fitness landscape. The first one can identify the most in-
formative points within the landscape, which we used to design
a small but diverse set of chimeric P450s. This set of highly in-
formative sequences was then used to demonstrate the ability of
Gaussian processes to accurately model P450 enzyme activity and
affinity for binding a ligand. The second algorithm identifies opti-
mized protein sequences by iteratively improving the Gaussian
process model in regions of the landscape that are predicted to be
highly optimized. This approach has allowed us to create functional
cytochrome P450s that are more thermostable than any previously
made by chimeragenesis, rational design, or directed evolution.

Results
Gaussian Process Model of the Protein Fitness Landscape. Gaussian
processes have gained attention in supervised machine learning,
where they are used for both classification and regression tasks
(inferring discrete and continuous functions from data, respec-
tively) (12). These nonparametric models use a kernel, or co-
variance function, to define a prior probability distribution over a
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.

E194 | www.pnas.org/cgi/doi/10.1073/pnas.1215251110 Romero et al.
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Knowing howprotein sequencemaps to function (the “fitness land-
scape”) is critical for understanding protein evolution as well as for
engineering proteins with new and useful properties. We demon-
strate that the protein fitness landscape can be inferred from exper-
imental data, using Gaussian processes, a Bayesian learning
technique. Gaussian process landscapes can model various protein
sequence properties, including functional status, thermostability,
enzyme activity, and ligand binding affinity. Trained on experimen-
tal data, these models achieve unrivaled quantitative accuracy. Fur-
thermore, the explicit representation of model uncertainty allows
for efficient searches through the vast space of possible sequences.
We develop and test two protein sequence design algorithms mo-
tivated by Bayesian decision theory. The first one identifies small
sets of sequences that are informative about the landscape; the
second one identifies optimized sequences by iteratively improving
the Gaussian process model in regions of the landscape that are
predicted to be optimized. We demonstrate the ability of Gaussian
processes to guide the search through protein sequence space by
designing, constructing, and testing chimeric cytochrome P450s.
These algorithms allowed us to engineer active P450 enzymes that
are more thermostable than any previously made by chimeragene-
sis, rational design, or directed evolution.
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In the mapping of protein sequence to protein behavior, the
phenotype can be envisioned as a surface, or landscape, over the

high-dimensional space of possible sequences (1). This “fitness
landscape” could describe how the protein contributes to organ-
ismal fitness, or it may represent a biophysical property, such as
stability, enzyme activity, or ligand binding affinity. The structure
of this surface describes the spectrum of possible phenotypes as
well as the mutational accessibility among them and therefore
strongly influences protein evolution. This surface is also the ob-
jective function for protein engineering, which seeks to identify
protein sequences that are highly optimized for a given property or
set of properties.
Identifying such optimized sequences is extremely challenging

for several reasons. First, the space of possible protein sequences is
incomprehensibly large and will never be searched exhaustively by
any means, naturally, in the laboratory, or computationally (2, 3).
Second, within this vast space, functional proteins are extremely
scarce, with estimates that range from a high of 1 in 1011 to as little
as 1 in 1077 (4, 5). Of the sequences that are functional, most have
poor fitness and their numbers decrease exponentially with higher
levels of fitness (6, 7). Thus, highly fit sequences are vanishingly
rare and overwhelmed by nonfunctional and mediocre sequences.
Computational protein engineering uses models of protein func-

tion to guide a search for optimized sequences. These models typi-
cally contain an atomic structural representation of a protein and
energy-based scoring functions to quantify the target function (8, 9).
Despite recent progress, these methods have limited utility because
they cannot reliably rank the performance of individual sequences.
In general, the factors that make one protein perform better than
another are complex and largely unknown. A major challenge for

computational protein engineering is finding models that accurately
describe the mapping from sequence to function (10).
Here, we introduce a class of models for protein function that

infer the fitness landscape directly from experimental data, using
Gaussian process regression, a technique that has gained recent
popularity in machine learning, where it falls into the broader class
of kernel methods (11, 12). The kernel function can describe the
covariance structure of the fitness landscape by specifying how the
properties of pairs of sequences are expected to covary. We chose
a structure-based kernel function inspired by the simple principle
that sequences with similar structures are more likely to have
similar properties. The Gaussian process models provide a proba-
bilistic description of the protein fitness landscape, including the
mean and variance of the fitness of any sequence. Importantly, a
sequence’s variance provides a measure of the model’s un-
certainty, which can be used to guide the search through sequence
space using concepts from Bayesian decision theory.
We develop and demonstrate the utility of Gaussian process

landscapes, using cytochrome P450s made by recombination of two
or more (homologous) parent enzymes.We show these models can
accurately describe P450 properties such as binary functional status
and thermostability. Because they are trained directly on experi-
mental data, the models implicitly account for all factors that
contribute to a specific property, including those that are unknown.
Using the Gaussian process model’s uncertainty as a guide, we
develop two algorithms that are able to efficiently explore the
protein fitness landscape. The first one can identify the most in-
formative points within the landscape, which we used to design
a small but diverse set of chimeric P450s. This set of highly in-
formative sequences was then used to demonstrate the ability of
Gaussian processes to accurately model P450 enzyme activity and
affinity for binding a ligand. The second algorithm identifies opti-
mized protein sequences by iteratively improving the Gaussian
process model in regions of the landscape that are predicted to be
highly optimized. This approach has allowed us to create functional
cytochrome P450s that are more thermostable than any previously
made by chimeragenesis, rational design, or directed evolution.

Results
Gaussian Process Model of the Protein Fitness Landscape. Gaussian
processes have gained attention in supervised machine learning,
where they are used for both classification and regression tasks
(inferring discrete and continuous functions from data, respec-
tively) (12). These nonparametric models use a kernel, or co-
variance function, to define a prior probability distribution over a
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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Knowing howprotein sequencemaps to function (the “fitness land-
scape”) is critical for understanding protein evolution as well as for
engineering proteins with new and useful properties. We demon-
strate that the protein fitness landscape can be inferred from exper-
imental data, using Gaussian processes, a Bayesian learning
technique. Gaussian process landscapes can model various protein
sequence properties, including functional status, thermostability,
enzyme activity, and ligand binding affinity. Trained on experimen-
tal data, these models achieve unrivaled quantitative accuracy. Fur-
thermore, the explicit representation of model uncertainty allows
for efficient searches through the vast space of possible sequences.
We develop and test two protein sequence design algorithms mo-
tivated by Bayesian decision theory. The first one identifies small
sets of sequences that are informative about the landscape; the
second one identifies optimized sequences by iteratively improving
the Gaussian process model in regions of the landscape that are
predicted to be optimized. We demonstrate the ability of Gaussian
processes to guide the search through protein sequence space by
designing, constructing, and testing chimeric cytochrome P450s.
These algorithms allowed us to engineer active P450 enzymes that
are more thermostable than any previously made by chimeragene-
sis, rational design, or directed evolution.

protein engineering | recombination | machine learning | experimental
design | active learning

In the mapping of protein sequence to protein behavior, the
phenotype can be envisioned as a surface, or landscape, over the

high-dimensional space of possible sequences (1). This “fitness
landscape” could describe how the protein contributes to organ-
ismal fitness, or it may represent a biophysical property, such as
stability, enzyme activity, or ligand binding affinity. The structure
of this surface describes the spectrum of possible phenotypes as
well as the mutational accessibility among them and therefore
strongly influences protein evolution. This surface is also the ob-
jective function for protein engineering, which seeks to identify
protein sequences that are highly optimized for a given property or
set of properties.
Identifying such optimized sequences is extremely challenging

for several reasons. First, the space of possible protein sequences is
incomprehensibly large and will never be searched exhaustively by
any means, naturally, in the laboratory, or computationally (2, 3).
Second, within this vast space, functional proteins are extremely
scarce, with estimates that range from a high of 1 in 1011 to as little
as 1 in 1077 (4, 5). Of the sequences that are functional, most have
poor fitness and their numbers decrease exponentially with higher
levels of fitness (6, 7). Thus, highly fit sequences are vanishingly
rare and overwhelmed by nonfunctional and mediocre sequences.
Computational protein engineering uses models of protein func-

tion to guide a search for optimized sequences. These models typi-
cally contain an atomic structural representation of a protein and
energy-based scoring functions to quantify the target function (8, 9).
Despite recent progress, these methods have limited utility because
they cannot reliably rank the performance of individual sequences.
In general, the factors that make one protein perform better than
another are complex and largely unknown. A major challenge for

computational protein engineering is finding models that accurately
describe the mapping from sequence to function (10).
Here, we introduce a class of models for protein function that

infer the fitness landscape directly from experimental data, using
Gaussian process regression, a technique that has gained recent
popularity in machine learning, where it falls into the broader class
of kernel methods (11, 12). The kernel function can describe the
covariance structure of the fitness landscape by specifying how the
properties of pairs of sequences are expected to covary. We chose
a structure-based kernel function inspired by the simple principle
that sequences with similar structures are more likely to have
similar properties. The Gaussian process models provide a proba-
bilistic description of the protein fitness landscape, including the
mean and variance of the fitness of any sequence. Importantly, a
sequence’s variance provides a measure of the model’s un-
certainty, which can be used to guide the search through sequence
space using concepts from Bayesian decision theory.
We develop and demonstrate the utility of Gaussian process

landscapes, using cytochrome P450s made by recombination of two
or more (homologous) parent enzymes.We show these models can
accurately describe P450 properties such as binary functional status
and thermostability. Because they are trained directly on experi-
mental data, the models implicitly account for all factors that
contribute to a specific property, including those that are unknown.
Using the Gaussian process model’s uncertainty as a guide, we
develop two algorithms that are able to efficiently explore the
protein fitness landscape. The first one can identify the most in-
formative points within the landscape, which we used to design
a small but diverse set of chimeric P450s. This set of highly in-
formative sequences was then used to demonstrate the ability of
Gaussian processes to accurately model P450 enzyme activity and
affinity for binding a ligand. The second algorithm identifies opti-
mized protein sequences by iteratively improving the Gaussian
process model in regions of the landscape that are predicted to be
highly optimized. This approach has allowed us to create functional
cytochrome P450s that are more thermostable than any previously
made by chimeragenesis, rational design, or directed evolution.

Results
Gaussian Process Model of the Protein Fitness Landscape. Gaussian
processes have gained attention in supervised machine learning,
where they are used for both classification and regression tasks
(inferring discrete and continuous functions from data, respec-
tively) (12). These nonparametric models use a kernel, or co-
variance function, to define a prior probability distribution over a
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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Knowing howprotein sequencemaps to function (the “fitness land-
scape”) is critical for understanding protein evolution as well as for
engineering proteins with new and useful properties. We demon-
strate that the protein fitness landscape can be inferred from exper-
imental data, using Gaussian processes, a Bayesian learning
technique. Gaussian process landscapes can model various protein
sequence properties, including functional status, thermostability,
enzyme activity, and ligand binding affinity. Trained on experimen-
tal data, these models achieve unrivaled quantitative accuracy. Fur-
thermore, the explicit representation of model uncertainty allows
for efficient searches through the vast space of possible sequences.
We develop and test two protein sequence design algorithms mo-
tivated by Bayesian decision theory. The first one identifies small
sets of sequences that are informative about the landscape; the
second one identifies optimized sequences by iteratively improving
the Gaussian process model in regions of the landscape that are
predicted to be optimized. We demonstrate the ability of Gaussian
processes to guide the search through protein sequence space by
designing, constructing, and testing chimeric cytochrome P450s.
These algorithms allowed us to engineer active P450 enzymes that
are more thermostable than any previously made by chimeragene-
sis, rational design, or directed evolution.

protein engineering | recombination | machine learning | experimental
design | active learning

In the mapping of protein sequence to protein behavior, the
phenotype can be envisioned as a surface, or landscape, over the

high-dimensional space of possible sequences (1). This “fitness
landscape” could describe how the protein contributes to organ-
ismal fitness, or it may represent a biophysical property, such as
stability, enzyme activity, or ligand binding affinity. The structure
of this surface describes the spectrum of possible phenotypes as
well as the mutational accessibility among them and therefore
strongly influences protein evolution. This surface is also the ob-
jective function for protein engineering, which seeks to identify
protein sequences that are highly optimized for a given property or
set of properties.
Identifying such optimized sequences is extremely challenging

for several reasons. First, the space of possible protein sequences is
incomprehensibly large and will never be searched exhaustively by
any means, naturally, in the laboratory, or computationally (2, 3).
Second, within this vast space, functional proteins are extremely
scarce, with estimates that range from a high of 1 in 1011 to as little
as 1 in 1077 (4, 5). Of the sequences that are functional, most have
poor fitness and their numbers decrease exponentially with higher
levels of fitness (6, 7). Thus, highly fit sequences are vanishingly
rare and overwhelmed by nonfunctional and mediocre sequences.
Computational protein engineering uses models of protein func-

tion to guide a search for optimized sequences. These models typi-
cally contain an atomic structural representation of a protein and
energy-based scoring functions to quantify the target function (8, 9).
Despite recent progress, these methods have limited utility because
they cannot reliably rank the performance of individual sequences.
In general, the factors that make one protein perform better than
another are complex and largely unknown. A major challenge for

computational protein engineering is finding models that accurately
describe the mapping from sequence to function (10).
Here, we introduce a class of models for protein function that

infer the fitness landscape directly from experimental data, using
Gaussian process regression, a technique that has gained recent
popularity in machine learning, where it falls into the broader class
of kernel methods (11, 12). The kernel function can describe the
covariance structure of the fitness landscape by specifying how the
properties of pairs of sequences are expected to covary. We chose
a structure-based kernel function inspired by the simple principle
that sequences with similar structures are more likely to have
similar properties. The Gaussian process models provide a proba-
bilistic description of the protein fitness landscape, including the
mean and variance of the fitness of any sequence. Importantly, a
sequence’s variance provides a measure of the model’s un-
certainty, which can be used to guide the search through sequence
space using concepts from Bayesian decision theory.
We develop and demonstrate the utility of Gaussian process

landscapes, using cytochrome P450s made by recombination of two
or more (homologous) parent enzymes.We show these models can
accurately describe P450 properties such as binary functional status
and thermostability. Because they are trained directly on experi-
mental data, the models implicitly account for all factors that
contribute to a specific property, including those that are unknown.
Using the Gaussian process model’s uncertainty as a guide, we
develop two algorithms that are able to efficiently explore the
protein fitness landscape. The first one can identify the most in-
formative points within the landscape, which we used to design
a small but diverse set of chimeric P450s. This set of highly in-
formative sequences was then used to demonstrate the ability of
Gaussian processes to accurately model P450 enzyme activity and
affinity for binding a ligand. The second algorithm identifies opti-
mized protein sequences by iteratively improving the Gaussian
process model in regions of the landscape that are predicted to be
highly optimized. This approach has allowed us to create functional
cytochrome P450s that are more thermostable than any previously
made by chimeragenesis, rational design, or directed evolution.

Results
Gaussian Process Model of the Protein Fitness Landscape. Gaussian
processes have gained attention in supervised machine learning,
where they are used for both classification and regression tasks
(inferring discrete and continuous functions from data, respec-
tively) (12). These nonparametric models use a kernel, or co-
variance function, to define a prior probability distribution over a
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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Knowing howprotein sequencemaps to function (the “fitness land-
scape”) is critical for understanding protein evolution as well as for
engineering proteins with new and useful properties. We demon-
strate that the protein fitness landscape can be inferred from exper-
imental data, using Gaussian processes, a Bayesian learning
technique. Gaussian process landscapes can model various protein
sequence properties, including functional status, thermostability,
enzyme activity, and ligand binding affinity. Trained on experimen-
tal data, these models achieve unrivaled quantitative accuracy. Fur-
thermore, the explicit representation of model uncertainty allows
for efficient searches through the vast space of possible sequences.
We develop and test two protein sequence design algorithms mo-
tivated by Bayesian decision theory. The first one identifies small
sets of sequences that are informative about the landscape; the
second one identifies optimized sequences by iteratively improving
the Gaussian process model in regions of the landscape that are
predicted to be optimized. We demonstrate the ability of Gaussian
processes to guide the search through protein sequence space by
designing, constructing, and testing chimeric cytochrome P450s.
These algorithms allowed us to engineer active P450 enzymes that
are more thermostable than any previously made by chimeragene-
sis, rational design, or directed evolution.

protein engineering | recombination | machine learning | experimental
design | active learning

In the mapping of protein sequence to protein behavior, the
phenotype can be envisioned as a surface, or landscape, over the

high-dimensional space of possible sequences (1). This “fitness
landscape” could describe how the protein contributes to organ-
ismal fitness, or it may represent a biophysical property, such as
stability, enzyme activity, or ligand binding affinity. The structure
of this surface describes the spectrum of possible phenotypes as
well as the mutational accessibility among them and therefore
strongly influences protein evolution. This surface is also the ob-
jective function for protein engineering, which seeks to identify
protein sequences that are highly optimized for a given property or
set of properties.
Identifying such optimized sequences is extremely challenging

for several reasons. First, the space of possible protein sequences is
incomprehensibly large and will never be searched exhaustively by
any means, naturally, in the laboratory, or computationally (2, 3).
Second, within this vast space, functional proteins are extremely
scarce, with estimates that range from a high of 1 in 1011 to as little
as 1 in 1077 (4, 5). Of the sequences that are functional, most have
poor fitness and their numbers decrease exponentially with higher
levels of fitness (6, 7). Thus, highly fit sequences are vanishingly
rare and overwhelmed by nonfunctional and mediocre sequences.
Computational protein engineering uses models of protein func-

tion to guide a search for optimized sequences. These models typi-
cally contain an atomic structural representation of a protein and
energy-based scoring functions to quantify the target function (8, 9).
Despite recent progress, these methods have limited utility because
they cannot reliably rank the performance of individual sequences.
In general, the factors that make one protein perform better than
another are complex and largely unknown. A major challenge for

computational protein engineering is finding models that accurately
describe the mapping from sequence to function (10).
Here, we introduce a class of models for protein function that

infer the fitness landscape directly from experimental data, using
Gaussian process regression, a technique that has gained recent
popularity in machine learning, where it falls into the broader class
of kernel methods (11, 12). The kernel function can describe the
covariance structure of the fitness landscape by specifying how the
properties of pairs of sequences are expected to covary. We chose
a structure-based kernel function inspired by the simple principle
that sequences with similar structures are more likely to have
similar properties. The Gaussian process models provide a proba-
bilistic description of the protein fitness landscape, including the
mean and variance of the fitness of any sequence. Importantly, a
sequence’s variance provides a measure of the model’s un-
certainty, which can be used to guide the search through sequence
space using concepts from Bayesian decision theory.
We develop and demonstrate the utility of Gaussian process

landscapes, using cytochrome P450s made by recombination of two
or more (homologous) parent enzymes.We show these models can
accurately describe P450 properties such as binary functional status
and thermostability. Because they are trained directly on experi-
mental data, the models implicitly account for all factors that
contribute to a specific property, including those that are unknown.
Using the Gaussian process model’s uncertainty as a guide, we
develop two algorithms that are able to efficiently explore the
protein fitness landscape. The first one can identify the most in-
formative points within the landscape, which we used to design
a small but diverse set of chimeric P450s. This set of highly in-
formative sequences was then used to demonstrate the ability of
Gaussian processes to accurately model P450 enzyme activity and
affinity for binding a ligand. The second algorithm identifies opti-
mized protein sequences by iteratively improving the Gaussian
process model in regions of the landscape that are predicted to be
highly optimized. This approach has allowed us to create functional
cytochrome P450s that are more thermostable than any previously
made by chimeragenesis, rational design, or directed evolution.

Results
Gaussian Process Model of the Protein Fitness Landscape. Gaussian
processes have gained attention in supervised machine learning,
where they are used for both classification and regression tasks
(inferring discrete and continuous functions from data, respec-
tively) (12). These nonparametric models use a kernel, or co-
variance function, to define a prior probability distribution over a
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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Knowing howprotein sequencemaps to function (the “fitness land-
scape”) is critical for understanding protein evolution as well as for
engineering proteins with new and useful properties. We demon-
strate that the protein fitness landscape can be inferred from exper-
imental data, using Gaussian processes, a Bayesian learning
technique. Gaussian process landscapes can model various protein
sequence properties, including functional status, thermostability,
enzyme activity, and ligand binding affinity. Trained on experimen-
tal data, these models achieve unrivaled quantitative accuracy. Fur-
thermore, the explicit representation of model uncertainty allows
for efficient searches through the vast space of possible sequences.
We develop and test two protein sequence design algorithms mo-
tivated by Bayesian decision theory. The first one identifies small
sets of sequences that are informative about the landscape; the
second one identifies optimized sequences by iteratively improving
the Gaussian process model in regions of the landscape that are
predicted to be optimized. We demonstrate the ability of Gaussian
processes to guide the search through protein sequence space by
designing, constructing, and testing chimeric cytochrome P450s.
These algorithms allowed us to engineer active P450 enzymes that
are more thermostable than any previously made by chimeragene-
sis, rational design, or directed evolution.

protein engineering | recombination | machine learning | experimental
design | active learning

In the mapping of protein sequence to protein behavior, the
phenotype can be envisioned as a surface, or landscape, over the

high-dimensional space of possible sequences (1). This “fitness
landscape” could describe how the protein contributes to organ-
ismal fitness, or it may represent a biophysical property, such as
stability, enzyme activity, or ligand binding affinity. The structure
of this surface describes the spectrum of possible phenotypes as
well as the mutational accessibility among them and therefore
strongly influences protein evolution. This surface is also the ob-
jective function for protein engineering, which seeks to identify
protein sequences that are highly optimized for a given property or
set of properties.
Identifying such optimized sequences is extremely challenging

for several reasons. First, the space of possible protein sequences is
incomprehensibly large and will never be searched exhaustively by
any means, naturally, in the laboratory, or computationally (2, 3).
Second, within this vast space, functional proteins are extremely
scarce, with estimates that range from a high of 1 in 1011 to as little
as 1 in 1077 (4, 5). Of the sequences that are functional, most have
poor fitness and their numbers decrease exponentially with higher
levels of fitness (6, 7). Thus, highly fit sequences are vanishingly
rare and overwhelmed by nonfunctional and mediocre sequences.
Computational protein engineering uses models of protein func-

tion to guide a search for optimized sequences. These models typi-
cally contain an atomic structural representation of a protein and
energy-based scoring functions to quantify the target function (8, 9).
Despite recent progress, these methods have limited utility because
they cannot reliably rank the performance of individual sequences.
In general, the factors that make one protein perform better than
another are complex and largely unknown. A major challenge for

computational protein engineering is finding models that accurately
describe the mapping from sequence to function (10).
Here, we introduce a class of models for protein function that

infer the fitness landscape directly from experimental data, using
Gaussian process regression, a technique that has gained recent
popularity in machine learning, where it falls into the broader class
of kernel methods (11, 12). The kernel function can describe the
covariance structure of the fitness landscape by specifying how the
properties of pairs of sequences are expected to covary. We chose
a structure-based kernel function inspired by the simple principle
that sequences with similar structures are more likely to have
similar properties. The Gaussian process models provide a proba-
bilistic description of the protein fitness landscape, including the
mean and variance of the fitness of any sequence. Importantly, a
sequence’s variance provides a measure of the model’s un-
certainty, which can be used to guide the search through sequence
space using concepts from Bayesian decision theory.
We develop and demonstrate the utility of Gaussian process

landscapes, using cytochrome P450s made by recombination of two
or more (homologous) parent enzymes.We show these models can
accurately describe P450 properties such as binary functional status
and thermostability. Because they are trained directly on experi-
mental data, the models implicitly account for all factors that
contribute to a specific property, including those that are unknown.
Using the Gaussian process model’s uncertainty as a guide, we
develop two algorithms that are able to efficiently explore the
protein fitness landscape. The first one can identify the most in-
formative points within the landscape, which we used to design
a small but diverse set of chimeric P450s. This set of highly in-
formative sequences was then used to demonstrate the ability of
Gaussian processes to accurately model P450 enzyme activity and
affinity for binding a ligand. The second algorithm identifies opti-
mized protein sequences by iteratively improving the Gaussian
process model in regions of the landscape that are predicted to be
highly optimized. This approach has allowed us to create functional
cytochrome P450s that are more thermostable than any previously
made by chimeragenesis, rational design, or directed evolution.

Results
Gaussian Process Model of the Protein Fitness Landscape. Gaussian
processes have gained attention in supervised machine learning,
where they are used for both classification and regression tasks
(inferring discrete and continuous functions from data, respec-
tively) (12). These nonparametric models use a kernel, or co-
variance function, to define a prior probability distribution over a

Author contributions: P.A.R., A.K., and F.H.A. designed research; P.A.R. performed re-
search; P.A.R. and A.K. contributed new reagents/analytic tools; P.A.R., A.K., and F.H.A.
analyzed data; and P.A.R., A.K., and F.H.A. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: frances@cheme.caltech.edu.

See Author Summary on page 813 (volume 110, number 3).

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1215251110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1215251110 PNAS | Published online December 31, 2012 | E193–E201

A
PP

LI
ED

BI
O
LO

G
IC
A
L

SC
IE
N
CE

S
CO

M
PU

TE
R
SC

IE
N
CE

S
PN

A
S
PL

US

function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.

E194 | www.pnas.org/cgi/doi/10.1073/pnas.1215251110 Romero et al.

Network representation 
and distance definition

function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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Knowing howprotein sequencemaps to function (the “fitness land-
scape”) is critical for understanding protein evolution as well as for
engineering proteins with new and useful properties. We demon-
strate that the protein fitness landscape can be inferred from exper-
imental data, using Gaussian processes, a Bayesian learning
technique. Gaussian process landscapes can model various protein
sequence properties, including functional status, thermostability,
enzyme activity, and ligand binding affinity. Trained on experimen-
tal data, these models achieve unrivaled quantitative accuracy. Fur-
thermore, the explicit representation of model uncertainty allows
for efficient searches through the vast space of possible sequences.
We develop and test two protein sequence design algorithms mo-
tivated by Bayesian decision theory. The first one identifies small
sets of sequences that are informative about the landscape; the
second one identifies optimized sequences by iteratively improving
the Gaussian process model in regions of the landscape that are
predicted to be optimized. We demonstrate the ability of Gaussian
processes to guide the search through protein sequence space by
designing, constructing, and testing chimeric cytochrome P450s.
These algorithms allowed us to engineer active P450 enzymes that
are more thermostable than any previously made by chimeragene-
sis, rational design, or directed evolution.

protein engineering | recombination | machine learning | experimental
design | active learning

In the mapping of protein sequence to protein behavior, the
phenotype can be envisioned as a surface, or landscape, over the

high-dimensional space of possible sequences (1). This “fitness
landscape” could describe how the protein contributes to organ-
ismal fitness, or it may represent a biophysical property, such as
stability, enzyme activity, or ligand binding affinity. The structure
of this surface describes the spectrum of possible phenotypes as
well as the mutational accessibility among them and therefore
strongly influences protein evolution. This surface is also the ob-
jective function for protein engineering, which seeks to identify
protein sequences that are highly optimized for a given property or
set of properties.
Identifying such optimized sequences is extremely challenging

for several reasons. First, the space of possible protein sequences is
incomprehensibly large and will never be searched exhaustively by
any means, naturally, in the laboratory, or computationally (2, 3).
Second, within this vast space, functional proteins are extremely
scarce, with estimates that range from a high of 1 in 1011 to as little
as 1 in 1077 (4, 5). Of the sequences that are functional, most have
poor fitness and their numbers decrease exponentially with higher
levels of fitness (6, 7). Thus, highly fit sequences are vanishingly
rare and overwhelmed by nonfunctional and mediocre sequences.
Computational protein engineering uses models of protein func-

tion to guide a search for optimized sequences. These models typi-
cally contain an atomic structural representation of a protein and
energy-based scoring functions to quantify the target function (8, 9).
Despite recent progress, these methods have limited utility because
they cannot reliably rank the performance of individual sequences.
In general, the factors that make one protein perform better than
another are complex and largely unknown. A major challenge for

computational protein engineering is finding models that accurately
describe the mapping from sequence to function (10).
Here, we introduce a class of models for protein function that

infer the fitness landscape directly from experimental data, using
Gaussian process regression, a technique that has gained recent
popularity in machine learning, where it falls into the broader class
of kernel methods (11, 12). The kernel function can describe the
covariance structure of the fitness landscape by specifying how the
properties of pairs of sequences are expected to covary. We chose
a structure-based kernel function inspired by the simple principle
that sequences with similar structures are more likely to have
similar properties. The Gaussian process models provide a proba-
bilistic description of the protein fitness landscape, including the
mean and variance of the fitness of any sequence. Importantly, a
sequence’s variance provides a measure of the model’s un-
certainty, which can be used to guide the search through sequence
space using concepts from Bayesian decision theory.
We develop and demonstrate the utility of Gaussian process

landscapes, using cytochrome P450s made by recombination of two
or more (homologous) parent enzymes.We show these models can
accurately describe P450 properties such as binary functional status
and thermostability. Because they are trained directly on experi-
mental data, the models implicitly account for all factors that
contribute to a specific property, including those that are unknown.
Using the Gaussian process model’s uncertainty as a guide, we
develop two algorithms that are able to efficiently explore the
protein fitness landscape. The first one can identify the most in-
formative points within the landscape, which we used to design
a small but diverse set of chimeric P450s. This set of highly in-
formative sequences was then used to demonstrate the ability of
Gaussian processes to accurately model P450 enzyme activity and
affinity for binding a ligand. The second algorithm identifies opti-
mized protein sequences by iteratively improving the Gaussian
process model in regions of the landscape that are predicted to be
highly optimized. This approach has allowed us to create functional
cytochrome P450s that are more thermostable than any previously
made by chimeragenesis, rational design, or directed evolution.

Results
Gaussian Process Model of the Protein Fitness Landscape. Gaussian
processes have gained attention in supervised machine learning,
where they are used for both classification and regression tasks
(inferring discrete and continuous functions from data, respec-
tively) (12). These nonparametric models use a kernel, or co-
variance function, to define a prior probability distribution over a
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
effect of a core mutation (red) with many contacts is expected to be larger
than that of a surface mutation (blue). (C) An example of a Gaussian process
landscape, shown in one dimension to simplify the representation. Red
points represent experimental data, and the Gaussian process model’s mean

and 95% confidence regions are shown by the green line and shaded areas,
respectively. Intuitively, sequences with similar structures are expected to
have similar properties. In addition, the model has high uncertainty (large
confidence intervals) in regions of sequence space that are not well sampled.
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
Tomodel the protein fitness landscape withGaussian processes,

we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
at sequence s is given by

E½ f ðsÞ$ ¼ kT
!
K þ σ2nI

"−1
y; [1]

and the variance of the landscape is

Var½ f ðsÞ$ ¼ kðs; sÞ− kT
!
K þ σ2nI

"−1
k; [2]

where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process

Fig. 1. Gaussian process landscapes. (A) The structure of a protein family
can be represented by a residue–residue contact map. Shown is the cyto-
chrome P450 heme domain with lines drawn between residue pairs that
contain any atom within 4.5 Å. (B) The structure-based kernel function
provides a notion of distance between sequences that adopt the same fold
(residue–residue contact map). Structural distance (d) is the number of
structural contacts that differ. This metric is similar to the Hamming distance,
but also accounts for the structural context of mutations. For example, the
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function space. In general, kernel functions represent a notion of
similarity between inputs, which allows them to describe many types
of complex relationships. Given examples of the target function, its
posterior probability distribution can be inferred using Bayes’
theorem. Intuitively, given a sample of points from a surface (i.e.,
points on the fitness landscape), we can draw conclusions about
unobserved locations on the basis of their distance from the
sampled points.
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we must define a kernel function that accurately captures the no-
tion of distance between pairs of sequences. Although the Ham-
ming distance is a naturalmetric, the properties of proteins depend
on the sequence only through their structure. We therefore chose
a sequence- and structure-based distance metric, which assumes
a fixed structure within a protein family, defined by all contacting
amino acid residues (the residue–residue contact map) (Fig. 1A).
Whereas the Hamming distance between any two sequences is the
number of aligned residues that differ, the structural distance
between two proteins in the same family is the number of con-
tacting residue pairs that differ (Fig. 1B). This structural distance is
similar to the Hamming distance, but also includes structural in-
formation and thus provides a more accurate description of how
mutations affect protein function. For example, the properties of
sequences that differ by a surface mutation, with few structural
contacts, are expected to be more similar than those of sequences
that differ by a coremutation. Importantly, this structural distance,
like theHamming distance, can be represented as an inner product
and therefore satisfies the requirements to be a valid kernel
function for Gaussian process learning (12).
Given experimental examples of how protein sequence maps

to function, Gaussian processes can be used to infer the full
protein fitness landscape. The expected value of the landscape f
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where k is the structure-based kernel function, K is the kernel
function evaluated at all pairs of sequences in the training set
(Ki,j = k(si, sj)), k is the kernel function evaluated at sequence s
and all sequences in the training data (ki = k(s, si)), σn2 is the
variance of the experimental measurement noise, and yi is the
experimentally determined property of training set sequence si.
From Eq. 1, we see that a sequence’s expected value is simply
a linear combination of all of the current data y, where the coef-
ficients depend on the structural distance between the sequence
and each sequence in the training set. This can be viewed as a spa-
tial interpolation within the protein fitness landscape, where
sequences that are close in structure are likely to have similar
properties (Fig. 1C). A nearly identical method has been used
for decades in geostatistics to infer the structure of terrestrial land-
scapes (13). The variance of a sequence (Eq. 2) is the difference
between what was known about the sequence before the experi-
ments and what was learned about the sequence from the experi-
ments. As expected, Gaussian process models have high con-
fidence in regions of the landscape that are well sampled and
low confidence in regions that are not (Fig. 1C). For the prediction
of discrete-valued properties (classification), the Gaussian process
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• The optimization process is based on a population of individuals. 

• Key operations are mutation and selection.
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Fig. 4: Farewell photo of the already reduced department of Michael Polanyi 
at the KWI for Physical Chemistry and Electrochemistry, 1933. First row 
from the left: Herr Hille, Irene Sackur, unknown, Akexander Szabo. Second 
row from the left: Michael Polanyi, Juro Horiuti (?). Third row from the left: 
Frau Gehrte (janitor), Frau Weissenberg (secretary). Fourth row from the left: 
Kurt Hauschild (lab assistant), Erika Cremer.

Fig. 3: Excerpt from Ref. 18 (1931) showing the potential energy surface of the H + H2 ⇔ H2 + H reaction for a collinear collision geometry as considered by 
Henry Eyring and Michael Polanyi (the London-Eyring-Polanyi potential energy surface). The arrow follows the minimum energy path from the reactant valley 
via a saddle point area (dashed) to the product valley.

your situation, which I see as extremely honorable and advan-
tageous, I would accept it.” But, on January 13, 1933, Polanyi 
declined. In a draft letter, he wrote:[26] “Although I fi rst arrived 
in Germany in my later years, I nonetheless am rooted here with 
the greater part of my being. Even if I wanted to leave here, in 
order to secure greater latitude in my professional work, this de-
cision would be especially diffi cult for me at the present moment 
when Germany endured such hard times. One would reluctantly 
give up a community which fi nds itself in such diffi culties, when 
one has shared earlier in the good times.”

However, Polanyi’s Berlin years, of which Wigner said,[27] “I 
doubt [Polanyi] was ever again as happy as he had been in 
Berlin,” did come to an end once the Nazis rose to power, on 
30 January 1933, and Polanyi was forced to emigrate from 
Germany; he left in August of 1933. He found a new academic 
home at the University of Manchester after all, however under 
conditions much less advantageous than spelled out in the de-
clined 1932 offer.14 In Manchester, where he held the chair 
made famous by John Dalton, Polanyi published about forty 

14 There was also a brewing opposition in the senior ranks of the English 
academia to hiring a foreigner instead of an Englishman.
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Fig. 4: Farewell photo of the already reduced department of Michael Polanyi 
at the KWI for Physical Chemistry and Electrochemistry, 1933. First row 
from the left: Herr Hille, Irene Sackur, unknown, Akexander Szabo. Second 
row from the left: Michael Polanyi, Juro Horiuti (?). Third row from the left: 
Frau Gehrte (janitor), Frau Weissenberg (secretary). Fourth row from the left: 
Kurt Hauschild (lab assistant), Erika Cremer.

Fig. 3: Excerpt from Ref. 18 (1931) showing the potential energy surface of the H + H2 ⇔ H2 + H reaction for a collinear collision geometry as considered by 
Henry Eyring and Michael Polanyi (the London-Eyring-Polanyi potential energy surface). The arrow follows the minimum energy path from the reactant valley 
via a saddle point area (dashed) to the product valley.

your situation, which I see as extremely honorable and advan-
tageous, I would accept it.” But, on January 13, 1933, Polanyi 
declined. In a draft letter, he wrote:[26] “Although I fi rst arrived 
in Germany in my later years, I nonetheless am rooted here with 
the greater part of my being. Even if I wanted to leave here, in 
order to secure greater latitude in my professional work, this de-
cision would be especially diffi cult for me at the present moment 
when Germany endured such hard times. One would reluctantly 
give up a community which fi nds itself in such diffi culties, when 
one has shared earlier in the good times.”

However, Polanyi’s Berlin years, of which Wigner said,[27] “I 
doubt [Polanyi] was ever again as happy as he had been in 
Berlin,” did come to an end once the Nazis rose to power, on 
30 January 1933, and Polanyi was forced to emigrate from 
Germany; he left in August of 1933. He found a new academic 
home at the University of Manchester after all, however under 
conditions much less advantageous than spelled out in the de-
clined 1932 offer.14 In Manchester, where he held the chair 
made famous by John Dalton, Polanyi published about forty 

14 There was also a brewing opposition in the senior ranks of the English 
academia to hiring a foreigner instead of an Englishman.
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7 September 1984, Volume 225, Number 4666 SCIENCE 

Packing Structures and 
Transitions in Liquids and Solids 

Frank H. Stillinger and Thomas A. Weber 

For reasons still imperfectly under-
stood, periodic crystalline order pro-
vides the most stable arrangement for 
the molecules of pure substances in bulk. 
This circumstance has caused crystallog-
raphy to become and to remain one of 
the most powerful tools available for 
revealing the structure of molecules and 
the nature of intermolecular forces. 

that both represent m1mma in <I>, the 
potential energy function that describes 
interactions in the respective systems. 
Perfect crystals correspond to absolute 
minima, defective crystals to higher rela-
tive minima, and amorphous deposits to 
minima that are higher still. This article 
explores some general facts about such 
locally stable minima, focusing in partie-

Summary. Classification of potential energy minima-mechanically stable molecu-
lar packings-offers a unifying principle for understanding condensed phase proper-
ties. This approach permits identification of an inherent structure in liquids that is 
normally obscured by thermal motions. Melting and freezing occur through character-
istic sequences of molecular packings, and a defect-softening phenomenon underlies 
the fact that they are thermodynamically first order. The topological distribution of 
feasible transitions between contiguous potential minima explains glass transitions 
and associated relaxation behavior. 

Perfect crystals are a rarity in our 
environment. More typically, dense mat-
ter appears as defective crystals, amor-
phous solids, and liquids. Describing the 
corresponding spatial arrangements of 
atoms and molecules is a major challenge 
on account of the diversity of possibili-
ties and because no experimental tech-
nique or combination of techniques cur-
rently provides the necessary atomic-
level precision and resolution compa-
rable to those in crystallography. 
Nevertheless, compelling scientific and 
technological needs continue to demand 
just that kind of structural information. 

The spatial patterns of atoms in crys-
tals and in amorphous solids share a 
basic attribute, at least at low tempera-
ture, where vibrations are minimal. It is 
7 SEPTEMBER 1984 

ular on their nonobvious relation to and 
influence on the liquid phase (1). The 
resulting conceptual framework seems to 
be useful for understanding a broad 
range of chemical and physical phenom-
ena in condensed phases. 

Mapping onto Minima 

Figure 1 illustrates in highly schematic 
fashion a small portion of the multidi-
mensional potential energy surface for 
an N-atom system. This drawing com-
presses into a two-dimensional cartoon 
the 3N-dimensional function <I> of all 
atom positional coordinates. The con-
stant-<P curves shown encircle various 
local minima (filled circles). Neighboring 

pairs of minima are separated by saddle 
points (crosses) through which mini-
mum-barrier paths would pass in con-
necting those minima. In general <I> will 
comprise internal interactions in the col-
lection of atoms, such as chemical bonds 
and van der Waals forces, and external 
interactions with vessel walls. Included 
somewhere in this collection of minima 
are the absolute minima corresponding 
to crystalline arrangements of the atoms. 

For any but the smallest values of N 
the number of distinct <I> minima is im-
pressively large. First, there is permuta-
tion symmetry to contend with: if all N 
atoms are identical, every local mini-
mum belongs to a family of N! minima all 
of the same depth and differing only by 
atom interchanges. Second, the number 
of geometrically distinguishable families 
of minima will rise exponentially with N. 
This latter feature rests on the expecta-
tion that particle packings can be rear-
ranged essentially independently in the 
two halves of a large system. Precise 
values of these numbers of distinguish-
able minima are elusive, but one esti-
mate (2) suggests that 1 gram of argon at 
its normal li9,uid density would possess 
roughly 10 10 2 

distinguishable particle 
packings. 

To understand condensed phase prop-
erties systematically in terms of <I> mini-
ma it is necessary first to carry out a 
division of the multidimensional space 
depicted in Fig. 1. The purpose is to 
assign any configuration of atoms 
uniquely to one local minimum; if it is 
not already at a minimum the displace-
ment exhibited by the system is simply 
regarded as a "vibrational" displace-
ment, possibly anharmonic in character. 
Thus packing and vibration effects can in 
principle be cleanly separated. 

The procedure for carrying out this 
division is straightforward if all atoms 
involved are identical (3). Any arbitrary 
configuration is assigned to the minimum 
that is finally encountered when moving 
"downhill" from that starting point 
along a steepest descent direction. Tech-
nically, this means that configurations 

The authors are members of the technical staff in 
the Chemical Physics Department, AT&T Bell Lab-
oratories, Murray Hill, New Jersey 07974. 
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are connected to (mapped onto) minima 
by solutions to the multidimensional 
equation 

arias = -V'<P(r) (1) 

where the vector r comprises all 3N 
atomic coordinates and where s is a 
virtual "time coordinate" for the de-
scent (4). Starting at any randomly cho-
sen r(s = 0), the solution r(s) as s oo 
locates the requisite minimum. The dot-
ted lines in Fig. 1 outline the regions 
containing all points that map onto the 
same interior minimum. Notice from 
Fig. 1 that boundaries separating neigh-
boring regions pass through saddle 
points on the <P hypersurface. 

Having introduced this division of the 
configuration space, a primary goal will 
be to describe motion within and transi-
tions between the regions and how that 
motion depends on temperature. 

Computer Simulation 

The complicated topography of the <P 
surface (Fig. 1) profoundly influences 
experimental measurements for the sub-
stance under consideration. But such 
measurements have very limited capaci-
ty to determine the topography and to 
follow details of the system's dynamical 
motion across the "<P-scape." Digital 
computer simulation offers an insightful 
alternative, at least for small (and one 
hopes representative) collections of 102 

to 103 atoms. Our own work in this area 
has relied on a computer to solve classi-
cal Newtonian equations of motion, sub-
ject to suitable initial and boundary con-
ditions, with analytical potential func-
tions that have been selected to repre-
sent specific materials of interest. As the 
classical dynamical trajectory is being 
generated the computer is required to 
carry out in parallel and frequently an-
other set of tasks, namely to identify the 
<P minimum onto which the instanta-
neous dynamical configuration would 
map by the steepest-descent construc-
tion (Eq. 1). This parallel activity sup-
plies a running record of the fiducial 
minima over whose regions the Newto-
nian dynamics takes the system. This 
would be analogous to a listing of names 
of counties passed over during a trans-
continental flight from New York to San 
Francisco. 

If initial conditions for the dynamics 
so decree, the system can be trapped at 
low total energy in the neighborhood of a 
single minimum. In that event the map-
ping yields a consistently monotonous 
result. But at higher energy, escape over 
saddle points becomes possible and the 

984 

running mapping onto m1mma reveals 
kinetic details about transitions between 
contiguous regions. Figures 2 and 3 pro-
vide a case in point. They refer to a 
computer simulation for an amorphous 
alloy at low temperature (174 K) com-
prising 120 nickel atoms and 30 phospho-
rous atoms. Figure 2 shows how the 
potential energy per atom, <!>, varies with 
time during a 3.1-picosecond interval, 
along the classical dynamical trajectory 
executed by this 150-atom system in its 
450-dimensional configuration space. 
The thermal motion of the atoms in this 
solid deposit consists primarily of har-
monic motion; but more than that is 

Fig. I. Schematic representation of the poten-
tial energy surface for an N-atom system. 
Minima are shown as filled circles and saddle 
points as crosses. Potential energy is constant 
along the continuous curves. Regions belong-
ing to different minima are indicated by 
dashed curves. 

Step number 

Fig. 2. Time variation of <!>, the potential 
energy per atom, in a !50-atom nickel-phos-
phorous amorphous deposit, as simulated by 
computer. Temperature is 174 K. The 104 

computer time steps shown correspond to 3 .I 
picoseconds of elapsed time. The quantity <!> 
is shown on a reduced basis; the energy unit 
used is 1.855 kilocalories per mole. 

present. Figure 3 shows, for exactly the 
same interval, the value of <!> at the 
nearby potential energy minima. Obvi-
ously the system has not merely execut-
ed vibrations around a single minimum 
but has undergone ten transitions be-
tween neighboring minima. In this case 
all the minima visited correspond to 
amorphous packings of the given set of 
atoms. 

If the temperature is increased for the 
nickel plus phosphorus system to which 
Figs. 2 and 3 refer, the transition rate 
between regions surrounding distinct 
minima increases dramatically. This 
temperature-dependent rate can be ana-
lyzed with an Arrhenius plot (logarithm 
of rate versus 1/1) to estimate the mean 
barrier. height. For the few cases that 
have been carefully examined this way, 
the mean barrier height for liquids turns 
out only to be about half of that which 
emerges from a corresponding Arrhenius 
plot for self-diffusion rates. The implica-
tion is that many transitions "get no-
where," that is, either involve motion 
into and out of culs-de-sac in the config-
uration space or must dynamically be 
followed by a surmounting of higher bot-
tleneck barriers for diffusion to occur. 

Certainly, computer modeling of bulk 
matter involving only 102 to 103 atoms 
requires care in interpretation. Never-
theless, the modest kinds of mapping-to-
minima calculations just illustrated ap-
parently produce several results of gen-
eral validity. Included among them are 
the following: 

1) Transitions are localized. The 
atomic arrangements for two successive-
ly visited packings (such as those indi-
cated in Fig. 3) normally differ only by 
rearrangement of a small set of atoms 
that form a compact grouping in three-
dimensional space. Most of the material 
present stays put, or at most responds 
elastically to the local rearrangement. 
Evidently, overall restructuring requires 
a sequence of many localized transitions. 

2) The transition rate is an extensive 
quantity, that is, the rate is proportional 
to the system size at least in the macro-
scopic limit. This feature follows from 
point 1 above. By doubling the size of 
the system (while holding temperature 
and composition fixed), the number of 
sites at which localized transitions could 
occur also doubles. Consequently, the 
mean residence time in any given mini-
mum region becomes halved. In con-
junction with results from small-system 
computer simulation, this extensivity re-
quires truly formidable transition rates 
for macroscopic samples of matter. For 
example, one estimate (2) implies that 1 
mole of liquid argon near its melting 
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corresponding spatial arrangements of 
atoms and molecules is a major challenge 
on account of the diversity of possibili-
ties and because no experimental tech-
nique or combination of techniques cur-
rently provides the necessary atomic-
level precision and resolution compa-
rable to those in crystallography. 
Nevertheless, compelling scientific and 
technological needs continue to demand 
just that kind of structural information. 

The spatial patterns of atoms in crys-
tals and in amorphous solids share a 
basic attribute, at least at low tempera-
ture, where vibrations are minimal. It is 
7 SEPTEMBER 1984 

ular on their nonobvious relation to and 
influence on the liquid phase (1). The 
resulting conceptual framework seems to 
be useful for understanding a broad 
range of chemical and physical phenom-
ena in condensed phases. 

Mapping onto Minima 

Figure 1 illustrates in highly schematic 
fashion a small portion of the multidi-
mensional potential energy surface for 
an N-atom system. This drawing com-
presses into a two-dimensional cartoon 
the 3N-dimensional function <I> of all 
atom positional coordinates. The con-
stant-<P curves shown encircle various 
local minima (filled circles). Neighboring 

pairs of minima are separated by saddle 
points (crosses) through which mini-
mum-barrier paths would pass in con-
necting those minima. In general <I> will 
comprise internal interactions in the col-
lection of atoms, such as chemical bonds 
and van der Waals forces, and external 
interactions with vessel walls. Included 
somewhere in this collection of minima 
are the absolute minima corresponding 
to crystalline arrangements of the atoms. 

For any but the smallest values of N 
the number of distinct <I> minima is im-
pressively large. First, there is permuta-
tion symmetry to contend with: if all N 
atoms are identical, every local mini-
mum belongs to a family of N! minima all 
of the same depth and differing only by 
atom interchanges. Second, the number 
of geometrically distinguishable families 
of minima will rise exponentially with N. 
This latter feature rests on the expecta-
tion that particle packings can be rear-
ranged essentially independently in the 
two halves of a large system. Precise 
values of these numbers of distinguish-
able minima are elusive, but one esti-
mate (2) suggests that 1 gram of argon at 
its normal li9,uid density would possess 
roughly 10 10 2 

distinguishable particle 
packings. 

To understand condensed phase prop-
erties systematically in terms of <I> mini-
ma it is necessary first to carry out a 
division of the multidimensional space 
depicted in Fig. 1. The purpose is to 
assign any configuration of atoms 
uniquely to one local minimum; if it is 
not already at a minimum the displace-
ment exhibited by the system is simply 
regarded as a "vibrational" displace-
ment, possibly anharmonic in character. 
Thus packing and vibration effects can in 
principle be cleanly separated. 

The procedure for carrying out this 
division is straightforward if all atoms 
involved are identical (3). Any arbitrary 
configuration is assigned to the minimum 
that is finally encountered when moving 
"downhill" from that starting point 
along a steepest descent direction. Tech-
nically, this means that configurations 

The authors are members of the technical staff in 
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Packing Structures and 
Transitions in Liquids and Solids 

Frank H. Stillinger and Thomas A. Weber 
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vides the most stable arrangement for 
the molecules of pure substances in bulk. 
This circumstance has caused crystallog-
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revealing the structure of molecules and 
the nature of intermolecular forces. 
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are connected to (mapped onto) minima 
by solutions to the multidimensional 
equation 

arias = -V'<P(r) (1) 

where the vector r comprises all 3N 
atomic coordinates and where s is a 
virtual "time coordinate" for the de-
scent (4). Starting at any randomly cho-
sen r(s = 0), the solution r(s) as s oo 
locates the requisite minimum. The dot-
ted lines in Fig. 1 outline the regions 
containing all points that map onto the 
same interior minimum. Notice from 
Fig. 1 that boundaries separating neigh-
boring regions pass through saddle 
points on the <P hypersurface. 

Having introduced this division of the 
configuration space, a primary goal will 
be to describe motion within and transi-
tions between the regions and how that 
motion depends on temperature. 

Computer Simulation 

The complicated topography of the <P 
surface (Fig. 1) profoundly influences 
experimental measurements for the sub-
stance under consideration. But such 
measurements have very limited capaci-
ty to determine the topography and to 
follow details of the system's dynamical 
motion across the "<P-scape." Digital 
computer simulation offers an insightful 
alternative, at least for small (and one 
hopes representative) collections of 102 

to 103 atoms. Our own work in this area 
has relied on a computer to solve classi-
cal Newtonian equations of motion, sub-
ject to suitable initial and boundary con-
ditions, with analytical potential func-
tions that have been selected to repre-
sent specific materials of interest. As the 
classical dynamical trajectory is being 
generated the computer is required to 
carry out in parallel and frequently an-
other set of tasks, namely to identify the 
<P minimum onto which the instanta-
neous dynamical configuration would 
map by the steepest-descent construc-
tion (Eq. 1). This parallel activity sup-
plies a running record of the fiducial 
minima over whose regions the Newto-
nian dynamics takes the system. This 
would be analogous to a listing of names 
of counties passed over during a trans-
continental flight from New York to San 
Francisco. 

If initial conditions for the dynamics 
so decree, the system can be trapped at 
low total energy in the neighborhood of a 
single minimum. In that event the map-
ping yields a consistently monotonous 
result. But at higher energy, escape over 
saddle points becomes possible and the 
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running mapping onto m1mma reveals 
kinetic details about transitions between 
contiguous regions. Figures 2 and 3 pro-
vide a case in point. They refer to a 
computer simulation for an amorphous 
alloy at low temperature (174 K) com-
prising 120 nickel atoms and 30 phospho-
rous atoms. Figure 2 shows how the 
potential energy per atom, <!>, varies with 
time during a 3.1-picosecond interval, 
along the classical dynamical trajectory 
executed by this 150-atom system in its 
450-dimensional configuration space. 
The thermal motion of the atoms in this 
solid deposit consists primarily of har-
monic motion; but more than that is 

Fig. I. Schematic representation of the poten-
tial energy surface for an N-atom system. 
Minima are shown as filled circles and saddle 
points as crosses. Potential energy is constant 
along the continuous curves. Regions belong-
ing to different minima are indicated by 
dashed curves. 

Step number 

Fig. 2. Time variation of <!>, the potential 
energy per atom, in a !50-atom nickel-phos-
phorous amorphous deposit, as simulated by 
computer. Temperature is 174 K. The 104 

computer time steps shown correspond to 3 .I 
picoseconds of elapsed time. The quantity <!> 
is shown on a reduced basis; the energy unit 
used is 1.855 kilocalories per mole. 

present. Figure 3 shows, for exactly the 
same interval, the value of <!> at the 
nearby potential energy minima. Obvi-
ously the system has not merely execut-
ed vibrations around a single minimum 
but has undergone ten transitions be-
tween neighboring minima. In this case 
all the minima visited correspond to 
amorphous packings of the given set of 
atoms. 

If the temperature is increased for the 
nickel plus phosphorus system to which 
Figs. 2 and 3 refer, the transition rate 
between regions surrounding distinct 
minima increases dramatically. This 
temperature-dependent rate can be ana-
lyzed with an Arrhenius plot (logarithm 
of rate versus 1/1) to estimate the mean 
barrier. height. For the few cases that 
have been carefully examined this way, 
the mean barrier height for liquids turns 
out only to be about half of that which 
emerges from a corresponding Arrhenius 
plot for self-diffusion rates. The implica-
tion is that many transitions "get no-
where," that is, either involve motion 
into and out of culs-de-sac in the config-
uration space or must dynamically be 
followed by a surmounting of higher bot-
tleneck barriers for diffusion to occur. 

Certainly, computer modeling of bulk 
matter involving only 102 to 103 atoms 
requires care in interpretation. Never-
theless, the modest kinds of mapping-to-
minima calculations just illustrated ap-
parently produce several results of gen-
eral validity. Included among them are 
the following: 

1) Transitions are localized. The 
atomic arrangements for two successive-
ly visited packings (such as those indi-
cated in Fig. 3) normally differ only by 
rearrangement of a small set of atoms 
that form a compact grouping in three-
dimensional space. Most of the material 
present stays put, or at most responds 
elastically to the local rearrangement. 
Evidently, overall restructuring requires 
a sequence of many localized transitions. 

2) The transition rate is an extensive 
quantity, that is, the rate is proportional 
to the system size at least in the macro-
scopic limit. This feature follows from 
point 1 above. By doubling the size of 
the system (while holding temperature 
and composition fixed), the number of 
sites at which localized transitions could 
occur also doubles. Consequently, the 
mean residence time in any given mini-
mum region becomes halved. In con-
junction with results from small-system 
computer simulation, this extensivity re-
quires truly formidable transition rates 
for macroscopic samples of matter. For 
example, one estimate (2) implies that 1 
mole of liquid argon near its melting 
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Optimization by 
Simulated Annealing 

S. Kirkpatrick, C. D. Gelatt, Jr . ,  M. P. Vecchi 

In this article we briefly review the 
central constructs in combinatorial opti- 
mization and in statistical mechanics and 
then develop the similarities between the 
two fields. We show how the Metropolis 
algorithm for approximate numerical 
simulation of the behavior of a many-
body system at  a finite temperature pro- 
vides a natural tool for bringing the tech- 
niques of statistical mechanics to  bear on 
optirn~ization. 

We have applied this point of view to a 
number of problems arising in optimal 
design of computers. Applications to 
partitioning, component placement, and 
wiring of electronic systems are de-
scribed in this article. In each context, 
we introduce the problem and discuss 
the improvements available from optimi- 
zation. 

Of classic optimization problems, the 
travel~~ngsalesman problem has received 
the most intensive study. T o  test the 
power of simulated annealing, we used 
the algorithm on traveling salesman 
problems with as  many a s  several thou- 
sand cities. This work is described in a 
final section, followed by our conclu-
sions. 

Combinatorial Optimization 

The subject of combinatorial optimiza- 
tion (1)consists of a set of problems that 
are central to  the disciplines of computer 
science and engineering. Research in this 
area aims a t  developing efficient tech- 
niques for finding minimum or  maximum 
values of a function of very many inde- 
pendent variables (2). This function, usu- 
ally called the cost function or  objective 
function, represents a quantitative mea- 
13 MAY I983 

sure of the "goodness" of some complex 
system. The cost function depends on 
the detailed configuration of the many 
parts of that system. We are most famil- 
iar with optimization problems occurring 
in the physical design of computers, so  
examples used below are drawn from 

with N, so  that in practice exact solu- 
tions can be attempted only on problems 
involving a few hundred cities o r  less. 
The traveling salesman belongs to  the 
large class of NP-complete (nondeter- 
ministic polynomial time complete) 
problems, which has received extensive 
study in the past 10 years (3).N o  method 
for exact solution with a computing ef- 
fort bounded by a power of N has been 
found for any of these problems, but if 
such a solution were found, it could be 
mapped into a procedure for solving all 
members of the class. It is not known 
what features of the individual problems 
in the NP-complete class are the cause of 
their difficulty. 

Since the NP-complete class of prob- 
lems contains many situations of practi- 
cal interest, heuristic methods have been 
developed with computational require- 

Summary. There is a deep and useful connection between statistical mechanics 
(the behavior of systems with many degrees of freedom in thermal equilibrium at a 
finite temperature) and multivariate or combinatorial optimization (finding the mini- 
mum of a given function depending on many parameters). A detailed analogy with 
annealing in solids provides a framework for optimization of the properties of very 
large and complex systems. This connection to statistical mechanics exposes new 
information and provides an unfamiliar perspective on traditional optimization prob- 
lems and methods. 

that context. The number of variables 
involved may range up  into the tens of 
thousands. 

The classic example, because it is so  
simply stated, of a combinatorial optimi- 
zation problem is the traveling salesman 
problem. Given a list of N cities and a 
means of calculating the cost of traveling 
between any two cities, one must plan 
the salesman's route, which will pass 
through each city once and return finally 
to  the starting point, minimizing the total 
cost. Problems with this flavor arise in 
all areas of scheduling and design. Two 
subsidiary problems are of general inter- 
est: predicting the expected cost of the 
salesman's optimal route, averaged over 
some class of typical arrangements of 
cities, and estimating or  obtaining 
bounds for the computing effort neces- 
sary to  determine that route. 

All exact methods known for deter- 
mining an optimal route require a com- 
puting effort that increases exponentially 

ments proportional to  small powers of N. 
Heuristics are  rather problem-specific: 
there is no guarantee that a heuristic 
procedure for finding near-optimal solu- 
tions for one NP-complete problem will 
be effective for another. 

There are two basic strategies for 
heuristics: "divide-and-conquer" and it- 
erative improvement. In the first, one 
divides the problem into subproblems of 
manageable size, then solves the sub- 
problems. The solutions to  the subprob- 
lems must then be patched back togeth- 
er. For  this method to produce very good 
solutions, the subproblems must be natu- 
rally disjoint, and the division made must 
be an appropriate one, so  that errors 
made in patching d o  not offset the gains 
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The transition process from gas 
to liquid to solid can be seen as 
optimization process
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vides a natural tool for bringing the tech- 
niques of statistical mechanics to  bear on 
optirn~ization. 

We have applied this point of view to a 
number of problems arising in optimal 
design of computers. Applications to 
partitioning, component placement, and 
wiring of electronic systems are de-
scribed in this article. In each context, 
we introduce the problem and discuss 
the improvements available from optimi- 
zation. 

Of classic optimization problems, the 
travel~~ngsalesman problem has received 
the most intensive study. T o  test the 
power of simulated annealing, we used 
the algorithm on traveling salesman 
problems with as  many a s  several thou- 
sand cities. This work is described in a 
final section, followed by our conclu-
sions. 

Combinatorial Optimization 

The subject of combinatorial optimiza- 
tion (1)consists of a set of problems that 
are central to  the disciplines of computer 
science and engineering. Research in this 
area aims a t  developing efficient tech- 
niques for finding minimum or  maximum 
values of a function of very many inde- 
pendent variables (2). This function, usu- 
ally called the cost function or  objective 
function, represents a quantitative mea- 
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sure of the "goodness" of some complex 
system. The cost function depends on 
the detailed configuration of the many 
parts of that system. We are most famil- 
iar with optimization problems occurring 
in the physical design of computers, so  
examples used below are drawn from 

with N, so  that in practice exact solu- 
tions can be attempted only on problems 
involving a few hundred cities o r  less. 
The traveling salesman belongs to  the 
large class of NP-complete (nondeter- 
ministic polynomial time complete) 
problems, which has received extensive 
study in the past 10 years (3).N o  method 
for exact solution with a computing ef- 
fort bounded by a power of N has been 
found for any of these problems, but if 
such a solution were found, it could be 
mapped into a procedure for solving all 
members of the class. It is not known 
what features of the individual problems 
in the NP-complete class are the cause of 
their difficulty. 

Since the NP-complete class of prob- 
lems contains many situations of practi- 
cal interest, heuristic methods have been 
developed with computational require- 

Summary. There is a deep and useful connection between statistical mechanics 
(the behavior of systems with many degrees of freedom in thermal equilibrium at a 
finite temperature) and multivariate or combinatorial optimization (finding the mini- 
mum of a given function depending on many parameters). A detailed analogy with 
annealing in solids provides a framework for optimization of the properties of very 
large and complex systems. This connection to statistical mechanics exposes new 
information and provides an unfamiliar perspective on traditional optimization prob- 
lems and methods. 

that context. The number of variables 
involved may range up  into the tens of 
thousands. 

The classic example, because it is so  
simply stated, of a combinatorial optimi- 
zation problem is the traveling salesman 
problem. Given a list of N cities and a 
means of calculating the cost of traveling 
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est: predicting the expected cost of the 
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some class of typical arrangements of 
cities, and estimating or  obtaining 
bounds for the computing effort neces- 
sary to  determine that route. 

All exact methods known for deter- 
mining an optimal route require a com- 
puting effort that increases exponentially 

ments proportional to  small powers of N. 
Heuristics are  rather problem-specific: 
there is no guarantee that a heuristic 
procedure for finding near-optimal solu- 
tions for one NP-complete problem will 
be effective for another. 

There are two basic strategies for 
heuristics: "divide-and-conquer" and it- 
erative improvement. In the first, one 
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manageable size, then solves the sub- 
problems. The solutions to  the subprob- 
lems must then be patched back togeth- 
er. For  this method to produce very good 
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manageable size, then solves the sub- 
problems. The solutions to  the subprob- 
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• Lennard-Jones potential as pair potential between noble gas atoms 

• What is the best (lowest potential energy) configuration at temperature T = 0?  

• How does the energy landscape look like for N number of atoms?
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We describe a global optimization technique using “basin-hopping” in which the potential energy surface is
transformed into a collection of interpenetrating staircases. This method has been designed to exploit the
features that recent work suggests must be present in an energy landscape for efficient relaxation to the
global minimum. The transformation associates any point in configuration space with the local minimum
obtained by a geometry optimization started from that point, effectively removing transition state regions
from the problem. However, unlike other methods based upon hypersurface deformation, this transformation
does not change the global minimum. The lowest known structures are located for all Lennard-Jones clusters
up to 110 atoms, including a number that have never been found before in unbiased searches.

I. Introduction
Global optimization is a subject of intense current interest.1

Improved global optimization methods could be of great
economic importance, since improved solutions to traveling
salesman-type problems, the routing of circuitry in a chip, the
active structure of a biomolecule, etc., equate to reduced costs
or improved performance. In chemical physics the interest in
efficient global optimization methods stems from the common
problem of finding the lowest energy configuration of a (macro)-
molecular system. For example, it seems likely that the native
structure of a protein is structurally related to the global
minimum of its potential energy surface (PES). If this global
minimum could be found reliably from the primary amino acid
sequence, this knowledge would provide new insight into the
nature of protein folding and save biochemists many hours in
the laboratory. Unfortunately, this goal is far from being
realized. Instead the development of global optimization
methods has usually concentrated on much simpler systems.
Lennard-Jones (LJ) clusters represent one such test system.

Here the potential is

where ✏ and 21/6Û are the pair equilibrium well depth and
separation, respectively. We will employ reduced units, i.e., ✏
) Û ) 1 throughout. Much of the initial interest in LJ clusters
was motivated by a desire to calculate nucleation rates for noble
gases. However, as a result of the wealth of data generated,
the LJ potential has been used not only for studying global
optimization but also the effects of finite size on phase
transitions such as melting. Through the combined efforts of
many workers, likely candidates for the global minima of LJN
clusters have been found up to N ) 147.2-16 This represents a
significant achievement since extrapolation of Tsai and Jordan’s
comprehensive enumeration of minima for small LJ clusters17
suggests that the PES of the 147-atom cluster possesses of the
order of 1060 minima.18

Previous studies have revealed that the Mackay icosahedron19
provides the dominant structural motif for LJ clusters in the
size range of 10-150 atoms. Complete icosahedra are possible
at N ) 13, 55, 147, ... At most intermediate sizes the global
minimum consists of a Mackay icosahedron at the core covered
by a low-energy overlayer. As a consequence of the phase
behavior of LJ clusters, finding these global minima is relatively
easy. Studies have shown that in the region of the solid-liquid
transition the cluster is observed to change back and forth
between a liquid-like form and icosahedral structures.20 As a
result of this “dynamic coexistence,” a method as crude as
molecular dynamics within the melting region coupled with
systematic minimization of configurations generated by the
trajectory is often sufficient to locate the global minimum.21
However, there are a number of sizes at which the global

minimum is not based on an icosahedral structure. These
clusters are illustrated in Figure 1. For LJ38 the lowest energy
structure is a face-centered-cubic (fcc) truncated octahedron,13,14
and for N ) 75, 76, 77, 102, 103, and 104, geometries based
on Marks’ decahedra22 are lowest in energy.14,15 For these cases,
finding the lowest minimum is much harder because the global
minimum of free energy only becomes associated with the global
potential energy minimum at temperatures well below melting
where the dynamics of structural relaxation are very slow. For
LJ38, the microcanonical temperature for the transition from face-
centered cubic to icosahedral structures has been estimated to
be about 0.12✏k-1, where k is the Boltzmann constant, and forX Abstract published in AdVance ACS Abstracts, June 15, 1997.
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Figure 1. Nonicosahedral Lennard-Jones global minima.
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We describe a global optimization technique using “basin-hopping” in which the potential energy surface is
transformed into a collection of interpenetrating staircases. This method has been designed to exploit the
features that recent work suggests must be present in an energy landscape for efficient relaxation to the
global minimum. The transformation associates any point in configuration space with the local minimum
obtained by a geometry optimization started from that point, effectively removing transition state regions
from the problem. However, unlike other methods based upon hypersurface deformation, this transformation
does not change the global minimum. The lowest known structures are located for all Lennard-Jones clusters
up to 110 atoms, including a number that have never been found before in unbiased searches.

I. Introduction
Global optimization is a subject of intense current interest.1

Improved global optimization methods could be of great
economic importance, since improved solutions to traveling
salesman-type problems, the routing of circuitry in a chip, the
active structure of a biomolecule, etc., equate to reduced costs
or improved performance. In chemical physics the interest in
efficient global optimization methods stems from the common
problem of finding the lowest energy configuration of a (macro)-
molecular system. For example, it seems likely that the native
structure of a protein is structurally related to the global
minimum of its potential energy surface (PES). If this global
minimum could be found reliably from the primary amino acid
sequence, this knowledge would provide new insight into the
nature of protein folding and save biochemists many hours in
the laboratory. Unfortunately, this goal is far from being
realized. Instead the development of global optimization
methods has usually concentrated on much simpler systems.
Lennard-Jones (LJ) clusters represent one such test system.

Here the potential is

where ✏ and 21/6Û are the pair equilibrium well depth and
separation, respectively. We will employ reduced units, i.e., ✏
) Û ) 1 throughout. Much of the initial interest in LJ clusters
was motivated by a desire to calculate nucleation rates for noble
gases. However, as a result of the wealth of data generated,
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transitions such as melting. Through the combined efforts of
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by a low-energy overlayer. As a consequence of the phase
behavior of LJ clusters, finding these global minima is relatively
easy. Studies have shown that in the region of the solid-liquid
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However, there are a number of sizes at which the global
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minimizations were performed using the Polak-Ribiere variant
of the conjugate gradient algorithm.54 Hence the energy at any
point in configuration space is assigned to that of the local
minimum obtained by the given geometry optimization tech-
nique, and the PES is mapped onto a set of interpenetrating
staircases with plateaus corresponding to the set of configura-
tions which lead to a given minimum after optimization. A
schematic view of the staircase topography that results from
this transformation is given in Figure 2. These plateaus, or
basins of attraction, have been visualized in previous work as
a means to compare the efficiency of different transition state
searching techniques.55,56

The energy landscape for the function Ẽ(X) was explored
using a canonical Monte Carlo simulation at a constant reduced
temperature of 0.8. At each step, all coordinates were displaced
by a random number in the range [-1,1] times the step size,
which was adjusted to give an acceptance ratio of 0.5. The
nature of the transformed surface allowed relatively large step
sizes of between 0.36-0.40. For each cluster in the range
considered, seven separate runs were conducted. Five of these
each consisted of 5000 Monte Carlo steps starting from different
randomly generated configurations of atoms confined to a sphere
of radius 5.5 reduced units. The subsequent geometry optimiza-
tions employed a container of radius one plus the value required
to contain the same volume per atom as the fcc primitive cell.
The container should have little effect on any of our results
and is only required to prevent dissociation during the conjugate
gradient optimizations.
The convergence criterion employed for the conjugate gradi-

ent optimizations used in the Monte Carlo moves need not be
very tight. In the present work we required the root-mean-
square (RMS) gradient to fall below 0.01 in reduced units and
the energy to change by less than 0.1 ✏ between consecutive
steps in the conjugate gradient search. Initially it appeared that
a tolerance of 0.1 for the RMS gradient was satisfactory, but
this was subsequently found to cause problems for clusters
containing more than about 60 atoms. The lowest energy
structures obtained during the canonical simulation were saved
and reoptimized with tolerances of 10-4 and 10-9 for the RMS
force and the energy difference, respectively. The final energies
are accurate to about six decimal places.
Several other techniques were employed in these calculations,

namely seeding, freezing and angular moves. Here we used
the pair energy per atom, E(i), defined as

so that the total energy is

If the highest pair energy rose above a fraction R of the lowest
pair energy then an angular move was employed for the atom
in question with all other atoms fixed. R was adjusted to give
an acceptance ratio for angular moves of 0.5 and generally
converged to between 0.40 and 0.44. Each angular displacement
consisted of choosing random ı and � spherical polar coordi-
nates for the atom in question, taking the origin at the center of
mass and replacing the radius with the maximum value in the
cluster.
The two remaining runs for each size consisted of only 200

Monte Carlo steps starting from the global minima obtained
for the clusters containing one more and one less atom. When
starting from LJN-1 the N - 1 atoms were frozen for the first
100 steps, during which only angular moves were attempted
for the remaining atom, starting from a random position outside
the core. When starting from LJN+1 the atom with the highest
pair energy E(i) was removed and 200 unrestricted Monte Carlo
moves were attempted from the resulting geometry.
The above basin-hopping algorithm shares a common phi-

losophy with our previous approach in which steps were taken
directly between minima using eigenvector-following to calcu-
late pathways.25 The latter method is similar to that described
recently by Barkema and Mousseau57 in their search for well-
relaxed configurations in glasses. Although the computational
expense of transition state searches probably makes this method
uncompetitive for global optimization, our study illustrated the
possible advantage of working in a space in which only the
minima are present. The basin-hopping algorithm differs in that
it is applied in configuration space to a transformed surface,
rather than in a discrete space of minima, and steps are taken
stochastically. The genetic algorithms described by Deaven et
al.16 and Niesse and Mayne28 used conjugate gradient minimiza-
tion to refine the local minima which comprise the population
of structures that are evolved in their procedure. Hence these
authors are in effect studying the same transformed surface as
described above, but explore it in a rather different manner.
We suspect that the success of their methods is at least partly
due to the implicit use of the transformed surface Ẽ.
The present approach is basically the same as the “Monte

Carlo-minimization” algorithm of Li and Scheraga,58 who
applied it to search the conformational space of the pentapeptide
[Met5]enkephalin. A similar method has recently been used
by Baysal and Meirovitch59 to search the conformational space
of cyclic polypeptides.

III. Results

The basin-hopping algorithm has successfully located all the
lowest known minima up to LJ110, including all the nonicosa-
hedral structures illustrated in Figure 1 (sizes 38, 75, 76, 77,
102, 103, and 104) and three new geometries based upon
icosahedra illustrated in Figure 3 (sizes 69, 78, and 107). We
believe that this is the first time any of the six decahedral global
minima have been located by an unbiased algorithm. The total
number of searches was fixed in our calculations to provide a
simple reference criterion. In fact, most of the global minima
were found in more than one of the separate Monte Carlo runs.
The global minima for the smallest clusters were located within
a few steps in each of the seven runs. To give a better idea of
how the algorithm performed we will provide some more details
for the sizes with nonicosahedral or newly discovered icosa-
hedral global minima.

Figure 2. A schematic diagram illustrating the effects of our energy
transformation for a one-dimensional example. The solid line is the
energy of the original surface and the dashed line is the transformed
energy Ẽ.
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■ Abstract This article reviews the concepts and methods of transition path sam-
pling. Thesemethods allow computational studies of rare eventswithout requiring prior
knowledge of mechanisms, reaction coordinates, and transition states. Based upon a
statistical mechanics of trajectory space, they provide a perspective with which time
dependent phenomena, even for systems driven far from equilibrium, can be examined
with the same types of importance sampling tools that in the past have been applied so
successfully to static equilibrium properties.

INTRODUCTION

During the past several years, we and our coworkers have developed a general com-
putational method for finding the transition pathways for infrequent events in both
equilibrium and nonequilibrium systems (1–14). The method requires no precon-
ceived notion of mechanism or transition state. Called “transition path sampling,”
it is metaphorically akin to throwing ropes over roughmountain passes, in the dark.
“Throwing ropes” in the sense that one shoots short trajectories, attempting to reach
one stable state from another. “In the dark” because high-dimensional systems are
so complex that it is generally impossible to literally visualize the topography
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Figure 2 In a Metropolis Monte Carlo simulation, one generates a random walk in
configuration space according to the probability distribution p(x) / exp[�V (x)/kBT ].
If the distribution were that of a canonical ensemble, V(x) would denote the potential
energy for configuration x. Along this walk, a new configuration x 0 is generated by
displacing the old configuration x by a randomly chosen small step, 1. Then x 0 is
accepted or rejected. If the step goes downhill in energy, i.e., if the new configuration
has a higher probability than the old one, x 0 is always accepted. Uphill moves, on
the other hand, are only accepted with a probability w(x, 1) p(x 0)/p(x)w(x 0, �1),
where w(x, 1) is the distribution for the random step,1, given the configuration x. In
this way, barriers of the order of kBT or smaller do not hinder the random walk, and
a system will move quickly to configurations of high probability (the lightly shaded
region) even when initiated far away from that important region in configuration space.

sections of this review use characteristic functions of configuration space, x, only,
but this limitation is not required.) When � is within region A, hA(� )= 1, other-
wise, hA(� ) = 0. The corresponding population operator for region B, hB(� ), is
similarly defined. Transitions between regions A and B coincide with trajectories
connecting these regions. A trajectory of time duration t, � (t) = (�0, �1, . . . , �t ),
is a chronological sequence of phase space points generated by repeated applica-
tion of a dynamical propagation rule. Trajectories we imagine are consistent with
Liouville’s equation or one of its analogues (27, 28). Namely, they must be re-
versible, must preserve the norm of the distribution of states, and must preserve an
equilibrium distribution. For simplicity, but not for necessity, we might be consid-
ering deterministic dynamics, in which case �t is entirely determined by the initial

A
B
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phase space point, �0. The statistical weight for the rare trajectories connecting
A and B is hA(�0)⇢[� (t)]hB(�t ), where ⇢[� (t)] is the unconstrained distribution
functional for trajectories. For deterministic trajectories,

⇢[� (t)] = ⇢(�0)
Y

0<t 0t
�[�t 0 � �t 0 (�0)], 1.

where⇢(�0) is the unconstrained distribution of initial phase space points,�0. Tran-
sition path sampling is done by carrying out a random walk in trajectory space,
biased to be the importance sampling for the distribution hA(�0)⇢[� (t)]hB(�t ).
Figure 3 illustrates how it is done in a practical and simple fashion.
In this perspective, stable or long-lived statesA andBmust bewell characterized

at the outset. This characterization can be difficult, as we discuss below. Never-
theless, we see that nothing need be presupposed about the dynamical pathways

Figure 3 Illustration of “shooting moves,” generating a random walk in trajectory
space for Newtonian trajectories connecting regions A and B. For example, trajectory
2 is generated by changing trajectory 1 by a small amount. This change can be accom-
plished, for example, by first choosing a time slice point ⌧ lying between 0 and t. At this
time slice, themomentum of trajectory 1 can be altered by some small randomly chosen
amount. The resulting newmomentum can be used along with the configuration of tra-
jectory 1 at time ⌧ as the initial conditions for a new trajectory created by propagating
forward from that phase space point for t�⌧ steps and backward from that phase space
point for ⌧ steps. Because regions A and B remain connected, this second path will be
accepted as the new trajectory, provided the value of ⇢(�0) for the new trajectory com-
pares favorably with that for the first trajectory. Specifically, the probability to attempt
a step from a trajectory � (t) = (�0, �1, . . . , �t ) to � 0(t) = (� 0

0, �
0
1, . . . , �

0
t ) is the joint

probability for choosing time slice ⌧ and assigning a momentum change � at that time
slice, w(� , ⌧, �). The acceptance probability for that trial step is min[1, w(� , ⌧, �)
hA(� 0

0) ⇢(� 0
0) hB(� 0

t )/hA(�0)⇢(�0)hB(�t )w(� 0, ⌧,��)]. By the same type of procedure,
trajectory 3 is generated from trajectory 2. This time, however, the new path does not
connect A and B, and it is rejected. This sequence of acceptances and rejections ensures
that the correct path ensemble is sampled—namely, the ensemble that isweighted by the
distribution hA(�0)⇢(�0)hB(�t ). There is great flexibility in the choice of random walk
steps. This flexibility can be exploited in efforts to improve the efficiency of transition
path sampling. In practice, shooting moves are only one of several moves employed in
transition path sampling. References (2, 10, 62) describe other useful moves.

Can we identify T?
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THE NEB METHOD
Essentially No Barriers in Neural Network Energy Landscape (under review at ICML 2018)

NEB bends a straight line segment by applying gradient
forces until there are no more gradients perpendicular to
the path. Then, as for the MEP, the highest point of the
resulting path is a critical point. While this critical point
is not necessarily the saddle point we were looking for, it
gives an upper bound for the energy at the saddle point.

In the following, we present the mechanical model behind
and the details of NEB. We then proceed to AutoNEB.

Mechanical Model A chain of N + 2 pivots (parameter
sets) pi for i = 0, . . . , N + 1 is connected via springs of
stiffness k. The initial and the final pivots are fixed to the
minima to connect, i.e. p0 = ✓1 and pN+1 = ✓2. Using gra-
dient descent, the path that minimises the following energy
function is found:

E(p) =
NX

i=1

L(pi) +
NX

i=0

1

2
k kpi+1 � pik2 (1)

The problem with this energy formulation lies in the choice
of the spring constant: If, on the one hand, k is too small,
the distances between the pivots become larger in areas with
high energy. However, identifying the highest point on the
path and its energy is the very goal of the algorithm, so the
sampling rate should be high in the high-energy regions.
If, on the other hand, k is chosen too large, it becomes
energetically advantageous to shorten and hence straighten
the path as the spring energy grows quadratically with the
total length of the path. This cuts into corners of the loss
surface and the resulting path can miss the saddle point.

Nudged Elastic Band Inspired by the above model, (Jóns-
son et al., 1998) presented the Nudged Elastic Band (NEB).
For brevity, we directly present the improved version
by (Henkelman & Jónsson, 2000). The force resulting from
Equation (1) consists of a force derived from the loss and a
force originating from the springs:

Fi = �rpiE(p) = FL
i + FS

i

For NEB, the physical forces are modified, or nudged, so
that the loss force only acts perpendicularly to the path
and the spring force only parallelly to the path (see also
Figure 2):

FNEB
i = FL

i

��
? + FS

i

��
k.

The direction of the path is defined by the local tangent ⌧̂i
to the path. The two forces now read:

FL
i

��
? = �(rL(pi)� (rL(pi) · ⌧̂i)⌧̂i)

FS
i

��
k = (FS

i · ⌧̂i)⌧̂i
(2)

where the spring force opposes unequal distances along the
path:

FS
i = �k(kpi � pi�1k � kpi+1 � pik) (3)

Figure 2. Two dimensional loss surface, with two minima con-
nected by a minimum energy path (MEP) and a nudged elastic
band (NEB) at iteration 0, 10 and converged. Construction of NEB
update �pi for one pivot. The tangent points to the neighbouring
pivot with higher energy. Re-distribution �psi acts parallelly and
the loss force riL perpendicularly to the tangent.

In this formulation, high energy pivots no longer “slide
down” from the saddle point. The spring force only re-
distributes pivots on the path, but does not straighten it.
Pivots can be spaced unequally by introducing target dis-
tances or unequal spring constants into Equation (3).

The local tangent is chosen to point in the direction of one
of the adjacent pivots (N normalises to length one):

⌧̂i = N
(
pi+1 � pi if L(pi+1) > L(pi�1)

pi � pi�1 else.

This particular choice of ⌧̂ prevents kinks in the path and
ensures a good approximation near the saddle point (Henkel-
man & Jónsson, 2000).

The above procedure requires the following hyperparame-
ters: The spring stiffness k and number of pivots N .

(Sheppard et al., 2008) claim that a wide range of k leads to
the same result on a given loss surface. However, if chosen
too large, the optimisation can become unstable. If it is too
small, an excessive number of iterations are needed before
the pivots become equally distributed. We did not find a
value for k that worked well across different loss surfaces
and number of pivots N . Instead, we re-distribute the pivots
in each iteration t and set the actual spring force to zero.
The loss force is still restricted to act parallelly to the path.
In the literature, this is sometimes referred to as the string
method (Sheppard et al., 2008).

F. Draxler, K. Veschgini, M. Salmhofer, and F. A. Hamprecht, “…,” 35th Int. Conf. Mach. Learn. ICML 2018, vol. 3, pp. 2101–2112, 2018.

The ``nudged elastic band” method (Jónsson et al. 1998)

Jónsson, H., Mills, G., and 
Jacobsen, K. W.  
Nudged elastic band method for 
finding minimum energy paths of 
transitions.  
In Classical and quantum 
dynamics in condensed phase 
simulations, pp. 385–404. World 
Scientific, 1998. 
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ENERGY LANDSCAPES AND 
PROTEIN FOLDING

The Energy Landscapes and Motions
of Proteins

HANS FRAUENFELDER, STEPHEN G. SLIGAR, PETER G. WOLYNES

Recent experiments, advances in theory, and analogies to
other complex systems such as glasses and spin glasses
yield insight into protein dynamics. The basis of the
understanding is the observation that the energy land-
scape is complex: Proteins can assume a large number of
nearly isoenergetic conformations (conformational sub-
states). The concepts that emerge from studies of the
conformational substates and the motions between them
permit a quantitative discussion of one simple reaction,
the binding of small ligands such as carbon monoxide to
myoglobin.

PROTEINS ARE DYNAMIC AND NOT STATIC SYSTEMS (1). IN-
deed, Weber has characterized proteins as "screaming and
kicking" (2). Our purpose in this article is not to prove again

that proteins move. Excellent reviews of the experimental evidence
exist (3), and results from molecular dynamics computations have
been elegantly exposed (4). Rather, we want to show that (i) the
"screaming and kicking" is not incomprehensible but that the
motions can be characterized and classified, (ii) studies from other
"complex" systems such as glasses yield information on how to
describe the motions, and (iii) the relation between motions and
function is beginning to be understood in some simple situations,
such as the binding of small ligands to myoglobin (Mb). Studies of
biomolecular dynamics today are in some sense where atomic
physics was near 1885. A bewildering variety ofprotein motions has
been revealed by fluorescence spectroscopy, nuclear magnetic reso-
nance (NMR), hydrogen exchange, and Raman scattering. Can
regularities be found and connected to the structure of proteins, and
can the underlying concepts and laws be discovered? We try to show
that some progress has been made.

Spectral lines are transitions between energy levels of atoms or
molecules, and protein motions can be described as transitions
between conformational substates of the protein. Thus, the charac-
terization and classification of these substates is the first task.
Different proteins most likely exhibit different sets of conformation-
al substates, but we believe that the general concepts are likely to be
universal. We have selected Mb, the protein that reversibly stores 02
(5), as prototype. Mb is simple enough that dynamic concepts can
be studied in detail and yet sufficiently complex that the concepts
discovered may be globally valid.

H. Frauenfelder is professor of physics, chemistry, biophysics, the Center for Advanced
Study, and the Beckman Institute, University of Illinois at Urbana, Champaign,
Urbana, IL 61801. S. G. Sligar is professor of biochemistry, chemistry, and the
Beckman Institute, University of Illinois at Urbana, Champaign, Urbana, IL 61801. P.
G. Wolynes is professor of chemistry, physics, biophysics, the Center for Advanced
Study, and the Beckman Institute, University of Illinois at Urbana, Champaign,
Urbana, IL 61801.

1598

Our second goal is important because progress is often made by
good use of analogies. Proteins and glasses share many properties.
Because glasses are simpler, they can serve as guides to the formu-
lation of concepts and theories. Two important features emerge
from the comparison of proteins and glasses: (i) Although it is
customary to describe the time dependence of protein reactions and
motions by simple exponentials and their temperature dependence
by the Arrhenius (transition state) expression, neither of these forms
is adequate. Glasses suggest what to substitute. (ii) At the theoretical
level many properties of the motions of glasses and proteins can be
discussed in terms of the features of rugged energy landscapes,
which thus provide a unifying language.
The third goal, the exploration of the relation of motions to

function, is the most difficult one to reach. We sketch one case, in
which a semiquantitative description of the role of motions in
function exists, namely, the binding of small ligands to Mb.

Conformation and Energy Landscape
Even a monomeric protein as small as Mb can execute a large

number of motions, and not all will be coupled to function.
Functionally important motions can be studied only if they can be
selected. In addition, the various motions must be temporally
resolved. Originally, experiments at physiological temperatures sug-
gested that the reaction ofMb + 02 MbO2 was a simple one-step
process (5). Low-temperature flash photolysis ofMbCO and MbO2
showed that the rebinding of the ligand to the heme active center
was nonexponential in time below -200 K (6). This observation
suggested that Mb did not have a single structure but could assume
a large number of slightly different structures, each with a different
rebinding rate. Because Mb has two globally distinct macrostates,
ligand-bound (MbCO or MbO2) and unbound (Mb), and there is a
spectrum of conformations in either state, these microstates are
called "conformational substates (CS)" (7). The cryochemical exper-
iments reveal that a protein in a given state can assume a large
number of CS, which form the scaffold for protein motions.
The organization of the CS in MbCO as presently known can be

visualized as in Fig. 1 (7, 8). The energy landscape describes the
potential energy Ec of the protein as a function of conformational
coordinates; it is a hypersurface in the high-dimensional space of the
coordinates of all atoms in Mb. The energy landscape (Fig. 1) has
structure on several energy and length scales as illustrated by
different one-dimensional cross sections through it. Figure 1 implies
that the CS can be roughly classified into a hierarchy (8), where CSi
denotes the substates in the ith tier in the organization. The top row
of Fig. 1 depicts MbCO in the conventional conception with a
unique structure corresponding to a unique energy valley. A hint
that MbCO is not as simple comes from infrared (IR) spectra: The
bound CO molecules display multiple stretch bands (9). Each band
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of therapeutic doses of antibiotics on the human
gut microbiota [e.g., (51–55)]. These studies—
although they examined different antibiotics by
means of various sampling strategies, treatment
durations, and analytical approaches—all have
found that antibiotics alter the composition of the
gut microbiota, and that the abundance of most
taxa begins to return to prior levels within several
weeks. However, the studies are also consistent
in showing that various taxa recover to differ-
ent extents and that some do not recover over
the duration of the study. The antibiotic effect
is greater than the routine temporal variability
of community composition (51, 52, 54). Some

studies have revealed that the composition of
strains within a taxon is sometimes altered, even
if the relative abundance of the taxon as a whole
has returned to pre-antibiotic levels. In both of
the studies that involved measurements of the
prevalence of antibiotic-resistant strains, elevated
levels of resistance persisted to the end of the
study (53, 54).

Overall, research suggests that the human gut
microbiota of generally healthy adults is largely,
but not entirely, resilient to short courses of anti-
biotic therapy, whereas clinical evidence indi-
cates that extended or repeated courses are more
likely to result in serious complications such as

the invasion and bloom of Clostridium difficile
(56). Perhaps over short courses of antibiotics, a
sufficient, although possibly quite small, number
of residual cells from most of the large, preexist-
ing populations survives to recolonize the gut.
An increasing number of these residual cells may
be lost with longer or repeated courses of anti-
biotics. Thus, reassembly of the microbial com-
munity after extended antibiotic treatment may
require colonization from outside the host—a
process that would likely be more variable and
require a longer period of time than reassembly
via the filtering of existing populations in the
host. In addition, the microbiome may be highly

vulnerable to invasion by (and/or
blooms of) pathogens during re-
covery after disturbance, because
resources are in high abundance
and resident populations are di-
minished. The longer recovery
time required after extended anti-
biotic treatment could lead to a
higher probability of invasion by
pathogenic strains. One can en-
vision a more enlightened strategy
for the clinical use of antibiotics
that includes pretreatment esti-
mates of a patient’s microbial com-
munity resilience, based on the
use of a standardized disturbance
and monitoring of key community
products, mapping of the commu-
nity stability landscape, and assess-
ment of the likelihood for community
displacement and adoption of a
disadvantageous, altered state. As-
sessments of elevated risk, or of loss
of resilience, might then prompt
efforts at restoration [see (57)].

Little is known regarding the
response of the microbiome to
frequent antibiotic use. When dis-
turbances take place with a mag-
nitude or frequency beyondwhat a
community has had an opportunity
to adapt to, ecological surprisesmay
occur (58). Such frequent distur-
bances may allow the persistence
of microbial taxa that are inferior
competitors within a given host but
are nonetheless maintained across
hosts because they have traits that
result in widespread and frequent
dispersal (i.e., “fugitive” taxa).
Such a scenario is analogous to the
patch dynamics paradigm of meta-
community theory (16).

Assembly of the Human
Microbiome in the Context
of Invaders (Pathogens)
It is naïve to consider only host
and pathogen when predicting the

Antibiotics,
oral hygiene

Community state
landscape 

Community state
landscape 

A

B

Alternative state 1

Diet intervention,
immunosuppressive drug

Alternative state 1

Alternative state 2

Alternative state 2

Shift in “state” variables alters the community directly

Shift in environmental “parameters” alters the community indirectly

Fig. 2. Disturbance can be illustrated using a stability landscape schematic. The ball represents the community; the
changing horizontal position of the ball represents the changing community state. The depth of a basin indicates the
likelihood of a community remaining in that basin despite frequent “buffeting” by minor disturbance (45) and hence
the relative stability of the community state. Disturbance can alter the community directly (A) by changing its
composition or activity, or indirectly (B) by changing the environmental parameters. In either case, the community can
shift to an alternative state. In reality, continuous feedback between the community and its environment means that
they change together. See (57) for applications to therapy.
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with a quantitative understanding of key envi-
ronmental risk factors and their interactions with
our human and microbial genomes. To complete
this picture, it is important to move beyond large-
ly DNA sequencing–based association studies
toward a mechanistic understanding of how
members of the gut microbiota, either in isola-
tion or through mutualistic interactions with each
other, can transform each compound. This will
require multiple complementary top-down and
bottom-up approaches, including detailed in vitro
analyses of culturable microbes; studies in germ-
free and intentionally colonized animal models;
metagenomic surveys of patients before, during,
and after treatment; and large-scale clinical trials.
These types of studies will likely lead to new
microbial therapeutic targets, noninvasive bio-
markers for drug toxicity or efficacy, and a broader

understanding of the short- and long-term impact
of xenobiotics on host and microbial physiology.
Furthermore, the detailed study of pharmaceuti-
cally active compounds may be a tractable first
step toward understanding the fundamental rules
that govern the immense phylogenetic and meta-
bolic diversity of our microbial partners and how
they influence our predisposition to and recovery
from disease.
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The Application of Ecological Theory
Toward an Understanding of the
Human Microbiome
Elizabeth K. Costello,1 Keaton Stagaman,2 Les Dethlefsen,1,3

Brendan J. M. Bohannan,2 David A. Relman1,3,4*

The human-microbial ecosystem plays a variety of important roles in human health and disease.
Each person can be viewed as an island-like “patch” of habitat occupied by microbial assemblages
formed by the fundamental processes of community ecology: dispersal, local diversification,
environmental selection, and ecological drift. Community assembly theory, and metacommunity
theory in particular, provides a framework for understanding the ecological dynamics of the human
microbiome, such as compositional variability within and between hosts. We explore three core
scenarios of human microbiome assembly: development in infants, representing assembly in
previously unoccupied habitats; recovery from antibiotics, representing assembly after disturbance;
and invasion by pathogens, representing assembly in the context of invasive species. Judicious
application of ecological theory may lead to improved strategies for restoring and maintaining the
microbiota and the crucial health-associated ecosystem services that it provides.

Each person is an assemblage of not only
human cells but also many symbiotic spe-
cies. The abundant and diverse microbial

members of the assemblage play critical roles in
the maintenance of human health by liberating
nutrients and/or energy from otherwise inacces-
sible dietary substrates, promoting differentiation
of host tissues, stimulating the immune system,
and protecting the host from invasion by path-
ogens. A number of clinical disorders are asso-

ciated with alterations in host-associated microbial
communities (the “microbiota”), including obe-
sity, malnutrition, and a variety of inflammatory
diseases of the skin, mouth, and intestinal tract.
Thus, the human body can be viewed as an eco-
system, and human health can be construed as a
product of ecosystem services delivered in part
by the microbiota.

There is growing interest in the use of theo-
retical methods to study microbial community
ecology in general and host-associated micro-
biota in particular (1, 2). Recent discoveries of
unexpected variation in the composition of the
microbiome of healthy individuals (3–5) high-
light the importance of identifying the processes
that could possibly give rise to such variation.
Ecological theory seeks to explain and predict
observable phenomena, such as temporal and

spatial patterns of diversity. Here, we explore
how community assembly theory can be used to
understand the human-associated microbiota and
its role in health and disease.

Ecological Processes Within Humans
The essential building blocks of community as-
sembly theory encompass the processes that
create and shape diversity in local assemblages:
dispersal, diversification, environmental selection,
and ecological drift (6). In addition, coevolution
provides another lens through which to view the
human-microbial ecosystem (7), although in this
review we focus on shorter-term dynamics at the
level of individual hosts.

Dispersal, or the movement of organisms
across space, is a fundamental process by which
diversity accumulates in local microbial com-
munities. The concept put forth in the late 19th
and early 20th centuries that “everything is ev-
erywhere, but the environment selects” had a
powerful impact on thinking about community
assembly (8), but a more recent appreciation of
microbial dispersal limitation suggests that this
conceptualization was overly simplistic. Think-
ing in terms of dispersal leads to a view of the
human body as an “island,” a patch of habitat
that is continually sampling the pool of available
colonists. The list of available colonists may
be influenced by microbial traits—those affect-
ing dispersal efficiency, transmission routes, and
“ex-host” survivability—and by patterns of host
contact and carriage, among other factors. Con-
trol of infectious disease transmission depends
on accurate models of host-to-host microbial dis-
persal (9), and these could guide investigations
into the dissemination of the human microbiome.
Selection favors efficient dispersal in pathogens,
but perhaps less so among beneficial bacteria,
because the host is harmed by the first and not by
the second; for beneficial microbes, transmission
routes such as direct or close contact may bemore
important. The density and spatial arrangement
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of therapeutic doses of antibiotics on the human
gut microbiota [e.g., (51–55)]. These studies—
although they examined different antibiotics by
means of various sampling strategies, treatment
durations, and analytical approaches—all have
found that antibiotics alter the composition of the
gut microbiota, and that the abundance of most
taxa begins to return to prior levels within several
weeks. However, the studies are also consistent
in showing that various taxa recover to differ-
ent extents and that some do not recover over
the duration of the study. The antibiotic effect
is greater than the routine temporal variability
of community composition (51, 52, 54). Some

studies have revealed that the composition of
strains within a taxon is sometimes altered, even
if the relative abundance of the taxon as a whole
has returned to pre-antibiotic levels. In both of
the studies that involved measurements of the
prevalence of antibiotic-resistant strains, elevated
levels of resistance persisted to the end of the
study (53, 54).

Overall, research suggests that the human gut
microbiota of generally healthy adults is largely,
but not entirely, resilient to short courses of anti-
biotic therapy, whereas clinical evidence indi-
cates that extended or repeated courses are more
likely to result in serious complications such as

the invasion and bloom of Clostridium difficile
(56). Perhaps over short courses of antibiotics, a
sufficient, although possibly quite small, number
of residual cells from most of the large, preexist-
ing populations survives to recolonize the gut.
An increasing number of these residual cells may
be lost with longer or repeated courses of anti-
biotics. Thus, reassembly of the microbial com-
munity after extended antibiotic treatment may
require colonization from outside the host—a
process that would likely be more variable and
require a longer period of time than reassembly
via the filtering of existing populations in the
host. In addition, the microbiome may be highly

vulnerable to invasion by (and/or
blooms of) pathogens during re-
covery after disturbance, because
resources are in high abundance
and resident populations are di-
minished. The longer recovery
time required after extended anti-
biotic treatment could lead to a
higher probability of invasion by
pathogenic strains. One can en-
vision a more enlightened strategy
for the clinical use of antibiotics
that includes pretreatment esti-
mates of a patient’s microbial com-
munity resilience, based on the
use of a standardized disturbance
and monitoring of key community
products, mapping of the commu-
nity stability landscape, and assess-
ment of the likelihood for community
displacement and adoption of a
disadvantageous, altered state. As-
sessments of elevated risk, or of loss
of resilience, might then prompt
efforts at restoration [see (57)].

Little is known regarding the
response of the microbiome to
frequent antibiotic use. When dis-
turbances take place with a mag-
nitude or frequency beyondwhat a
community has had an opportunity
to adapt to, ecological surprisesmay
occur (58). Such frequent distur-
bances may allow the persistence
of microbial taxa that are inferior
competitors within a given host but
are nonetheless maintained across
hosts because they have traits that
result in widespread and frequent
dispersal (i.e., “fugitive” taxa).
Such a scenario is analogous to the
patch dynamics paradigm of meta-
community theory (16).

Assembly of the Human
Microbiome in the Context
of Invaders (Pathogens)
It is naïve to consider only host
and pathogen when predicting the
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Fig. 2. Disturbance can be illustrated using a stability landscape schematic. The ball represents the community; the
changing horizontal position of the ball represents the changing community state. The depth of a basin indicates the
likelihood of a community remaining in that basin despite frequent “buffeting” by minor disturbance (45) and hence
the relative stability of the community state. Disturbance can alter the community directly (A) by changing its
composition or activity, or indirectly (B) by changing the environmental parameters. In either case, the community can
shift to an alternative state. In reality, continuous feedback between the community and its environment means that
they change together. See (57) for applications to therapy.
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of therapeutic doses of antibiotics on the human
gut microbiota [e.g., (51–55)]. These studies—
although they examined different antibiotics by
means of various sampling strategies, treatment
durations, and analytical approaches—all have
found that antibiotics alter the composition of the
gut microbiota, and that the abundance of most
taxa begins to return to prior levels within several
weeks. However, the studies are also consistent
in showing that various taxa recover to differ-
ent extents and that some do not recover over
the duration of the study. The antibiotic effect
is greater than the routine temporal variability
of community composition (51, 52, 54). Some

studies have revealed that the composition of
strains within a taxon is sometimes altered, even
if the relative abundance of the taxon as a whole
has returned to pre-antibiotic levels. In both of
the studies that involved measurements of the
prevalence of antibiotic-resistant strains, elevated
levels of resistance persisted to the end of the
study (53, 54).

Overall, research suggests that the human gut
microbiota of generally healthy adults is largely,
but not entirely, resilient to short courses of anti-
biotic therapy, whereas clinical evidence indi-
cates that extended or repeated courses are more
likely to result in serious complications such as
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(56). Perhaps over short courses of antibiotics, a
sufficient, although possibly quite small, number
of residual cells from most of the large, preexist-
ing populations survives to recolonize the gut.
An increasing number of these residual cells may
be lost with longer or repeated courses of anti-
biotics. Thus, reassembly of the microbial com-
munity after extended antibiotic treatment may
require colonization from outside the host—a
process that would likely be more variable and
require a longer period of time than reassembly
via the filtering of existing populations in the
host. In addition, the microbiome may be highly

vulnerable to invasion by (and/or
blooms of) pathogens during re-
covery after disturbance, because
resources are in high abundance
and resident populations are di-
minished. The longer recovery
time required after extended anti-
biotic treatment could lead to a
higher probability of invasion by
pathogenic strains. One can en-
vision a more enlightened strategy
for the clinical use of antibiotics
that includes pretreatment esti-
mates of a patient’s microbial com-
munity resilience, based on the
use of a standardized disturbance
and monitoring of key community
products, mapping of the commu-
nity stability landscape, and assess-
ment of the likelihood for community
displacement and adoption of a
disadvantageous, altered state. As-
sessments of elevated risk, or of loss
of resilience, might then prompt
efforts at restoration [see (57)].

Little is known regarding the
response of the microbiome to
frequent antibiotic use. When dis-
turbances take place with a mag-
nitude or frequency beyondwhat a
community has had an opportunity
to adapt to, ecological surprisesmay
occur (58). Such frequent distur-
bances may allow the persistence
of microbial taxa that are inferior
competitors within a given host but
are nonetheless maintained across
hosts because they have traits that
result in widespread and frequent
dispersal (i.e., “fugitive” taxa).
Such a scenario is analogous to the
patch dynamics paradigm of meta-
community theory (16).
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they change together. See (57) for applications to therapy.
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with a quantitative understanding of key envi-
ronmental risk factors and their interactions with
our human and microbial genomes. To complete
this picture, it is important to move beyond large-
ly DNA sequencing–based association studies
toward a mechanistic understanding of how
members of the gut microbiota, either in isola-
tion or through mutualistic interactions with each
other, can transform each compound. This will
require multiple complementary top-down and
bottom-up approaches, including detailed in vitro
analyses of culturable microbes; studies in germ-
free and intentionally colonized animal models;
metagenomic surveys of patients before, during,
and after treatment; and large-scale clinical trials.
These types of studies will likely lead to new
microbial therapeutic targets, noninvasive bio-
markers for drug toxicity or efficacy, and a broader

understanding of the short- and long-term impact
of xenobiotics on host and microbial physiology.
Furthermore, the detailed study of pharmaceuti-
cally active compounds may be a tractable first
step toward understanding the fundamental rules
that govern the immense phylogenetic and meta-
bolic diversity of our microbial partners and how
they influence our predisposition to and recovery
from disease.
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Toward an Understanding of the
Human Microbiome
Elizabeth K. Costello,1 Keaton Stagaman,2 Les Dethlefsen,1,3

Brendan J. M. Bohannan,2 David A. Relman1,3,4*

The human-microbial ecosystem plays a variety of important roles in human health and disease.
Each person can be viewed as an island-like “patch” of habitat occupied by microbial assemblages
formed by the fundamental processes of community ecology: dispersal, local diversification,
environmental selection, and ecological drift. Community assembly theory, and metacommunity
theory in particular, provides a framework for understanding the ecological dynamics of the human
microbiome, such as compositional variability within and between hosts. We explore three core
scenarios of human microbiome assembly: development in infants, representing assembly in
previously unoccupied habitats; recovery from antibiotics, representing assembly after disturbance;
and invasion by pathogens, representing assembly in the context of invasive species. Judicious
application of ecological theory may lead to improved strategies for restoring and maintaining the
microbiota and the crucial health-associated ecosystem services that it provides.

Each person is an assemblage of not only
human cells but also many symbiotic spe-
cies. The abundant and diverse microbial

members of the assemblage play critical roles in
the maintenance of human health by liberating
nutrients and/or energy from otherwise inacces-
sible dietary substrates, promoting differentiation
of host tissues, stimulating the immune system,
and protecting the host from invasion by path-
ogens. A number of clinical disorders are asso-

ciated with alterations in host-associated microbial
communities (the “microbiota”), including obe-
sity, malnutrition, and a variety of inflammatory
diseases of the skin, mouth, and intestinal tract.
Thus, the human body can be viewed as an eco-
system, and human health can be construed as a
product of ecosystem services delivered in part
by the microbiota.

There is growing interest in the use of theo-
retical methods to study microbial community
ecology in general and host-associated micro-
biota in particular (1, 2). Recent discoveries of
unexpected variation in the composition of the
microbiome of healthy individuals (3–5) high-
light the importance of identifying the processes
that could possibly give rise to such variation.
Ecological theory seeks to explain and predict
observable phenomena, such as temporal and

spatial patterns of diversity. Here, we explore
how community assembly theory can be used to
understand the human-associated microbiota and
its role in health and disease.

Ecological Processes Within Humans
The essential building blocks of community as-
sembly theory encompass the processes that
create and shape diversity in local assemblages:
dispersal, diversification, environmental selection,
and ecological drift (6). In addition, coevolution
provides another lens through which to view the
human-microbial ecosystem (7), although in this
review we focus on shorter-term dynamics at the
level of individual hosts.

Dispersal, or the movement of organisms
across space, is a fundamental process by which
diversity accumulates in local microbial com-
munities. The concept put forth in the late 19th
and early 20th centuries that “everything is ev-
erywhere, but the environment selects” had a
powerful impact on thinking about community
assembly (8), but a more recent appreciation of
microbial dispersal limitation suggests that this
conceptualization was overly simplistic. Think-
ing in terms of dispersal leads to a view of the
human body as an “island,” a patch of habitat
that is continually sampling the pool of available
colonists. The list of available colonists may
be influenced by microbial traits—those affect-
ing dispersal efficiency, transmission routes, and
“ex-host” survivability—and by patterns of host
contact and carriage, among other factors. Con-
trol of infectious disease transmission depends
on accurate models of host-to-host microbial dis-
persal (9), and these could guide investigations
into the dissemination of the human microbiome.
Selection favors efficient dispersal in pathogens,
but perhaps less so among beneficial bacteria,
because the host is harmed by the first and not by
the second; for beneficial microbes, transmission
routes such as direct or close contact may bemore
important. The density and spatial arrangement
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• What do you know about             ? 

• What is the dimensionality of the problem? 

• Does the function         have special properties? What are good properties? 

• Can you evaluate gradients or higher-order information of the function?

OPENING UP THE BLACK BOX 
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• What do you know about             ? 

• What is the dimensionality of the problem? 

• Does the function         have special properties? What are good properties? 

• Can you evaluate gradients or higher-order information of the function?
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• How much does it cost (in computation time/experimental time) to evaluate 
the function? How often can you evaluate it? 

• Is the function value deterministic? Is it stochastic? 

• How accurate does the solution need to be? 

• …
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Let’s start with a simple scenario:  

You know very little about f(x) but it is low-dimensional 

You can only evaluate f(x), no higher order information 

The domain of x is simple, say a hypercube 

You can only evaluate f(x) a couple of times



PURE RANDOM SEARCH 
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Rastrigin, L.A. (1963). "The convergence of the random search 
method in the extremal control of a many parameter system". 
Automation and Remote Control. 24 (10): 1337–1342.
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Rastrigin, L.A. (1963). "The convergence of the random search 
method in the extremal control of a many parameter system". 
Automation and Remote Control. 24 (10): 1337–1342.

• Use it when you know very little about the function and the function is costly 

• Useful when your input domain is simple, e.g., a hyper-cube 

• Only requires function evaluations, no other information needed 

• Better coverage than grid search



PURE RANDOM SEARCH 

 40

Rastrigin, L.A. (1963). "The convergence of the random search 
method in the extremal control of a many parameter system". 
Automation and Remote Control. 24 (10): 1337–1342.

• Use it when you know very little about the function and the function is costly 

• Useful when your input domain is simple, e.g., a hyper-cube 

• Only requires function evaluations, no other information needed 

• Better coverage than grid search
BERGSTRA AND BENGIO

Grid Layout Random Layout

U
n
im

p
or

ta
n
t

p
ar

am
et

er

Important parameter

U
n
im

p
or

ta
n
t

p
ar

am
et

er

Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.
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Abstract
Grid search and manual search are the most widely used strategies for hyper-parameter optimiza-
tion. This paper shows empirically and theoretically that randomly chosen trials are more efficient
for hyper-parameter optimization than trials on a grid. Empirical evidence comes from a compar-
ison with a large previous study that used grid search and manual search to configure neural net-
works and deep belief networks. Compared with neural networks configured by a pure grid search,
we find that random search over the same domain is able to find models that are as good or better
within a small fraction of the computation time. Granting random search the same computational
budget, random search finds better models by effectively searching a larger, less promising con-
figuration space. Compared with deep belief networks configured by a thoughtful combination of
manual search and grid search, purely random search over the same 32-dimensional configuration
space found statistically equal performance on four of seven data sets, and superior performance
on one of seven. A Gaussian process analysis of the function from hyper-parameters to validation
set performance reveals that for most data sets only a few of the hyper-parameters really matter,
but that different hyper-parameters are important on different data sets. This phenomenon makes
grid search a poor choice for configuring algorithms for new data sets. Our analysis casts some
light on why recent “High Throughput” methods achieve surprising success—they appear to search
through a large number of hyper-parameters because most hyper-parameters do not matter much.
We anticipate that growing interest in large hierarchical models will place an increasing burden on
techniques for hyper-parameter optimization; this work shows that random search is a natural base-
line against which to judge progress in the development of adaptive (sequential) hyper-parameter
optimization algorithms.

Keywords: global optimization, model selection, neural networks, deep learning, response surface
modeling

1. Introduction

The ultimate objective of a typical learning algorithm A is to find a function f that minimizes some
expected loss L(x; f ) over i.i.d. samples x from a natural (grand truth) distribution Gx. A learning
algorithm A is a functional that maps a data set X (train) (a finite set of samples from Gx) to a function
f . Very often a learning algorithm produces f through the optimization of a training criterion with
respect to a set of parameters θ. However, the learning algorithm itself often has bells and whistles
called hyper-parameters λ, and the actual learning algorithm is the one obtained after choosing
λ, which can be denoted Aλ, and f = Aλ(X

(train)) for a training set X (train). For example, with a

c⃝2012 James Bergstra and Yoshua Bengio.
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• Use it when you know very little about the function and the function is 
not costly, i.e., you can evaluate O(n2) points  

• Input domain is simple, e.g. a hyper-cube, not too high-dimensional 

• Typically used in simulation-based optimization where only 
function evaluations are available 

• Popular method: Nelder-Mead Simplex method (not recommended), 
Pattern search, Covariance Matrix Adaptation ES

http://www.cmap.polytechnique.fr/~nikolaus.hansen/
CMA-ES resources 
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• Use invariance (symmetry) principles as much as possible 

• (approximate) Invariance to affine transformations of the domain 

• Invariance to monotone transformations of the objective function 

• Invariance to 
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• Bayesian optimization is a type of sequential design scheme 

• An acquisition function guides the generation of a new 
function evaluation that balances exploration and 
exploitation 

• Builds a surrogate model of the function (often with 
Gaussian Processes) (see Directed Evolution example) 

• Use it when you know very little about the function and the 
function is costly and low-dimensional 

• Input domain is simple, e.g. a hyper-cube
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Abstract

The use of machine learning algorithms frequently involves careful tuning of
learning parameters and model hyperparameters. Unfortunately, this tuning is of-
ten a “black art” requiring expert experience, rules of thumb, or sometimes brute-
force search. There is therefore great appeal for automatic approaches that can
optimize the performance of any given learning algorithm to the problem at hand.
In this work, we consider this problem through the framework of Bayesian opti-
mization, in which a learning algorithm’s generalization performance is modeled
as a sample from a Gaussian process (GP). We show that certain choices for the
nature of the GP, such as the type of kernel and the treatment of its hyperparame-
ters, can play a crucial role in obtaining a good optimizer that can achieve expert-
level performance. We describe new algorithms that take into account the variable
cost (duration) of learning algorithm experiments and that can leverage the pres-
ence of multiple cores for parallel experimentation. We show that these proposed
algorithms improve on previous automatic procedures and can reach or surpass

human expert-level optimization for many algorithms including latent Dirichlet
allocation, structured SVMs and convolutional neural networks.

1 Introduction
Machine learning algorithms are rarely parameter-free: parameters controlling the rate of learning
or the capacity of the underlying model must often be specified. These parameters are often con-
sidered nuisances, making it appealing to develop machine learning algorithms with fewer of them.
Another, more flexible take on this issue is to view the optimization of such parameters as a proce-
dure to be automated. Specifically, we could view such tuning as the optimization of an unknown
black-box function and invoke algorithms developed for such problems. A good choice is Bayesian
optimization [1], which has been shown to outperform other state of the art global optimization
algorithms on a number of challenging optimization benchmark functions [2]. For continuous func-
tions, Bayesian optimization typically works by assuming the unknown function was sampled from
a Gaussian process and maintains a posterior distribution for this function as observations are made
or, in our case, as the results of running learning algorithm experiments with different hyperpa-
rameters are observed. To pick the hyperparameters of the next experiment, one can optimize the
expected improvement (EI) [1] over the current best result or the Gaussian process upper confidence
bound (UCB)[3]. EI and UCB have been shown to be efficient in the number of function evaluations
required to find the global optimum of many multimodal black-box functions [4, 3].

1

• Bayesian optimization is a type of sequential design scheme 

• An acquisition function guides the generation of a new 
function evaluation that balances exploration and 
exploitation 

• Builds a surrogate model of the function (often with 
Gaussian Processes) (see Directed Evolution example) 
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Ok, so far so good. But say, you know the gradient of the 
function. What can we do then?
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f(x,y) = −(cos2x + cos2y)2 

wikipedia

gradient field
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• The gradient of the function f is available 

• The function can be high-dimensional 

• The function is smooth with Lipschitz constant L:

Smooth functions

“Not too curved”

Definition

Let f : Rd
! R be convex and di↵erentiable. f is called smooth (with parameter

L � 0) if

f(y)  f(x) +rf(x)>(y � x) +
L

2
kx� yk2, 8x,y 2 Rd.

Definition does not require convexity (useful later)

EPFL Machine Learning and Optimization Laboratory 10/18
gradient field
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The Algorithm

Get near to a minimum x? / close to the optimal value f(x?)?
(Assumptions: f : Rd ! R convex, di↵erentiable, has a global minimum x?)

Goal: Find x 2 Rd such that
f(x)� f(x?)  ".

Note that there can be several minima x?
1 6= x?

2 with f(x?
1) = f(x?

2).

Iterative Algorithm:

xt+1 := xt � �rf(xt),

for timesteps t = 0, 1, . . . , and stepsize � � 0.

EPFL Machine Learning and Optimization Laboratory 3/18

• Gradient descent:

gradient field



GRADIENT-BASED OPTIMIZATION

 53

�γrf(x1)
<latexit sha1_base64="U1qETIcKTQPQCtHNoZvqiQINwcc=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAS3RQVdiFTpC0wJN9PbOHRmEjJTTSmu/R1uFXfi1t/Rf2OqcVFzVofv3HvhHi/kTGnLmhq5hcWl5ZX8amFtfWNzq7i901bBKKLYogEPoq4HCjmT2NJMc+yGEYLwOHa84dks7zxgpFggm3ocYk+AL9mAUdAJcot7h44PQoDpSPA4mINy7NoVt1iyataPzKyxU1MiqRpucer0AzoSKDXloNSdbYW6N4FIM8rxqeCMFIZAh+DjBIQSoO8zUI2FNw9nYypEOk/jkWQ06P+7GnMd6wgSqFALYHIQSD1pMoHKvMZH8zYQIP/S5OwsLp8zn2lVvUrKkNWLCHFYyawkXdj/P8+a9lHNTvzNcal+mraSJ/vkgJSJTU5InVySBmkRSibkhbySN+PZeDc+jM/f0ZyR7uySORlf39N/mK8=</latexit><latexit sha1_base64="U1qETIcKTQPQCtHNoZvqiQINwcc=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAS3RQVdiFTpC0wJN9PbOHRmEjJTTSmu/R1uFXfi1t/Rf2OqcVFzVofv3HvhHi/kTGnLmhq5hcWl5ZX8amFtfWNzq7i901bBKKLYogEPoq4HCjmT2NJMc+yGEYLwOHa84dks7zxgpFggm3ocYk+AL9mAUdAJcot7h44PQoDpSPA4mINy7NoVt1iyataPzKyxU1MiqRpucer0AzoSKDXloNSdbYW6N4FIM8rxqeCMFIZAh+DjBIQSoO8zUI2FNw9nYypEOk/jkWQ06P+7GnMd6wgSqFALYHIQSD1pMoHKvMZH8zYQIP/S5OwsLp8zn2lVvUrKkNWLCHFYyawkXdj/P8+a9lHNTvzNcal+mraSJ/vkgJSJTU5InVySBmkRSibkhbySN+PZeDc+jM/f0ZyR7uySORlf39N/mK8=</latexit><latexit sha1_base64="U1qETIcKTQPQCtHNoZvqiQINwcc=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAS3RQVdiFTpC0wJN9PbOHRmEjJTTSmu/R1uFXfi1t/Rf2OqcVFzVofv3HvhHi/kTGnLmhq5hcWl5ZX8amFtfWNzq7i901bBKKLYogEPoq4HCjmT2NJMc+yGEYLwOHa84dks7zxgpFggm3ocYk+AL9mAUdAJcot7h44PQoDpSPA4mINy7NoVt1iyataPzKyxU1MiqRpucer0AzoSKDXloNSdbYW6N4FIM8rxqeCMFIZAh+DjBIQSoO8zUI2FNw9nYypEOk/jkWQ06P+7GnMd6wgSqFALYHIQSD1pMoHKvMZH8zYQIP/S5OwsLp8zn2lVvUrKkNWLCHFYyawkXdj/P8+a9lHNTvzNcal+mraSJ/vkgJSJTU5InVySBmkRSibkhbySN+PZeDc+jM/f0ZyR7uySORlf39N/mK8=</latexit><latexit sha1_base64="U1qETIcKTQPQCtHNoZvqiQINwcc=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAS3RQVdiFTpC0wJN9PbOHRmEjJTTSmu/R1uFXfi1t/Rf2OqcVFzVofv3HvhHi/kTGnLmhq5hcWl5ZX8amFtfWNzq7i901bBKKLYogEPoq4HCjmT2NJMc+yGEYLwOHa84dks7zxgpFggm3ocYk+AL9mAUdAJcot7h44PQoDpSPA4mINy7NoVt1iyataPzKyxU1MiqRpucer0AzoSKDXloNSdbYW6N4FIM8rxqeCMFIZAh+DjBIQSoO8zUI2FNw9nYypEOk/jkWQ06P+7GnMd6wgSqFALYHIQSD1pMoHKvMZH8zYQIP/S5OwsLp8zn2lVvUrKkNWLCHFYyawkXdj/P8+a9lHNTvzNcal+mraSJ/vkgJSJTU5InVySBmkRSibkhbySN+PZeDc+jM/f0ZyR7uySORlf39N/mK8=</latexit>

�γrf(x2)
<latexit sha1_base64="p/+sGlCGAyln2Y4gGHFnyD8XTfA=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWpAhuiwq6EKnSF9gSbqa3cejMJGSm2hJc+zvcKu7Erb+j/8ZU46LNWR2+c++Fe9yAM6Uta2pklpZXVtey67mNza3tnfzuXkv5o5Bik/rcDzsuKORMYlMzzbEThAjC5dh2h+ezvP2IoWK+bOhJgD0BnmQDRkHHyMkfHHc9EALMrgSXgzkojp1qyckXrIr1KzNt7MQUSKK6k592+z4dCZSaclDq3rYC3Ysg1IxyfM51RwoDoEPwMAKhBOiHFFQT4c7D2ZgKkM7T8Ugy6vcXro65HusQYqhQC2By4EsdNZhAZd7gk3nnC5D/aXx2FhcvmMe0Kl/HZcjyZYg4LKVW4i7sxc/TplWt2LG/PSnUzpJWsuSQHJEisckpqZErUidNQklEXskbeTdejA/j0/j6G80Yyc4+mZPx/QPVC5iw</latexit><latexit sha1_base64="p/+sGlCGAyln2Y4gGHFnyD8XTfA=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWpAhuiwq6EKnSF9gSbqa3cejMJGSm2hJc+zvcKu7Erb+j/8ZU46LNWR2+c++Fe9yAM6Uta2pklpZXVtey67mNza3tnfzuXkv5o5Bik/rcDzsuKORMYlMzzbEThAjC5dh2h+ezvP2IoWK+bOhJgD0BnmQDRkHHyMkfHHc9EALMrgSXgzkojp1qyckXrIr1KzNt7MQUSKK6k592+z4dCZSaclDq3rYC3Ysg1IxyfM51RwoDoEPwMAKhBOiHFFQT4c7D2ZgKkM7T8Ugy6vcXro65HusQYqhQC2By4EsdNZhAZd7gk3nnC5D/aXx2FhcvmMe0Kl/HZcjyZYg4LKVW4i7sxc/TplWt2LG/PSnUzpJWsuSQHJEisckpqZErUidNQklEXskbeTdejA/j0/j6G80Yyc4+mZPx/QPVC5iw</latexit><latexit sha1_base64="p/+sGlCGAyln2Y4gGHFnyD8XTfA=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWpAhuiwq6EKnSF9gSbqa3cejMJGSm2hJc+zvcKu7Erb+j/8ZU46LNWR2+c++Fe9yAM6Uta2pklpZXVtey67mNza3tnfzuXkv5o5Bik/rcDzsuKORMYlMzzbEThAjC5dh2h+ezvP2IoWK+bOhJgD0BnmQDRkHHyMkfHHc9EALMrgSXgzkojp1qyckXrIr1KzNt7MQUSKK6k592+z4dCZSaclDq3rYC3Ysg1IxyfM51RwoDoEPwMAKhBOiHFFQT4c7D2ZgKkM7T8Ugy6vcXro65HusQYqhQC2By4EsdNZhAZd7gk3nnC5D/aXx2FhcvmMe0Kl/HZcjyZYg4LKVW4i7sxc/TplWt2LG/PSnUzpJWsuSQHJEisckpqZErUidNQklEXskbeTdejA/j0/j6G80Yyc4+mZPx/QPVC5iw</latexit><latexit sha1_base64="p/+sGlCGAyln2Y4gGHFnyD8XTfA=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWpAhuiwq6EKnSF9gSbqa3cejMJGSm2hJc+zvcKu7Erb+j/8ZU46LNWR2+c++Fe9yAM6Uta2pklpZXVtey67mNza3tnfzuXkv5o5Bik/rcDzsuKORMYlMzzbEThAjC5dh2h+ezvP2IoWK+bOhJgD0BnmQDRkHHyMkfHHc9EALMrgSXgzkojp1qyckXrIr1KzNt7MQUSKK6k592+z4dCZSaclDq3rYC3Ysg1IxyfM51RwoDoEPwMAKhBOiHFFQT4c7D2ZgKkM7T8Ugy6vcXro65HusQYqhQC2By4EsdNZhAZd7gk3nnC5D/aXx2FhcvmMe0Kl/HZcjyZYg4LKVW4i7sxc/TplWt2LG/PSnUzpJWsuSQHJEisckpqZErUidNQklEXskbeTdejA/j0/j6G80Yyc4+mZPx/QPVC5iw</latexit>

�γrf(x3)
<latexit sha1_base64="eCdqolKqiYBWcYvpflrgzjx8ty8=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAW3RQVdiFTpC2wJN9PbOHRmEjJTbQmu/R1uFXfi1t/Rf2OqcdHmrA7fuffCPW7AmdKWNTEyC4tLyyvZ1dza+sbmVn57p6n8YUixQX3uh20XFHImsaGZ5tgOQgThcmy5g/Np3nrEUDFf1vU4wK4AT7I+o6Bj5OT3DjseCAFmR4LLwewXR85xyckXrIr1KzNt7MQUSKKak590ej4dCpSaclDq3rYC3Y0g1IxyfM51hgoDoAPwMAKhBOiHFFRj4c7C6ZgKkM7S0VAy6vfmro64HukQYqhQC2Cy70sd1ZlAZd7gk3nnC5D/aXx2GhcvmMe0Kl/HZcjyZYg4KKVW4i7s+c/TpnlUsWN/e1KoniWtZMk+OSBFYpNTUiVXpEYahJKIvJI38m68GB/Gp/H1N5oxkp1dMiPj+wfWl5ix</latexit><latexit sha1_base64="eCdqolKqiYBWcYvpflrgzjx8ty8=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAW3RQVdiFTpC2wJN9PbOHRmEjJTbQmu/R1uFXfi1t/Rf2OqcdHmrA7fuffCPW7AmdKWNTEyC4tLyyvZ1dza+sbmVn57p6n8YUixQX3uh20XFHImsaGZ5tgOQgThcmy5g/Np3nrEUDFf1vU4wK4AT7I+o6Bj5OT3DjseCAFmR4LLwewXR85xyckXrIr1KzNt7MQUSKKak590ej4dCpSaclDq3rYC3Y0g1IxyfM51hgoDoAPwMAKhBOiHFFRj4c7C6ZgKkM7S0VAy6vfmro64HukQYqhQC2Cy70sd1ZlAZd7gk3nnC5D/aXx2GhcvmMe0Kl/HZcjyZYg4KKVW4i7s+c/TpnlUsWN/e1KoniWtZMk+OSBFYpNTUiVXpEYahJKIvJI38m68GB/Gp/H1N5oxkp1dMiPj+wfWl5ix</latexit><latexit sha1_base64="eCdqolKqiYBWcYvpflrgzjx8ty8=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAW3RQVdiFTpC2wJN9PbOHRmEjJTbQmu/R1uFXfi1t/Rf2OqcdHmrA7fuffCPW7AmdKWNTEyC4tLyyvZ1dza+sbmVn57p6n8YUixQX3uh20XFHImsaGZ5tgOQgThcmy5g/Np3nrEUDFf1vU4wK4AT7I+o6Bj5OT3DjseCAFmR4LLwewXR85xyckXrIr1KzNt7MQUSKKak590ej4dCpSaclDq3rYC3Y0g1IxyfM51hgoDoAPwMAKhBOiHFFRj4c7C6ZgKkM7S0VAy6vfmro64HukQYqhQC2Cy70sd1ZlAZd7gk3nnC5D/aXx2GhcvmMe0Kl/HZcjyZYg4KKVW4i7s+c/TpnlUsWN/e1KoniWtZMk+OSBFYpNTUiVXpEYahJKIvJI38m68GB/Gp/H1N5oxkp1dMiPj+wfWl5ix</latexit><latexit sha1_base64="eCdqolKqiYBWcYvpflrgzjx8ty8=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAW3RQVdiFTpC2wJN9PbOHRmEjJTbQmu/R1uFXfi1t/Rf2OqcdHmrA7fuffCPW7AmdKWNTEyC4tLyyvZ1dza+sbmVn57p6n8YUixQX3uh20XFHImsaGZ5tgOQgThcmy5g/Np3nrEUDFf1vU4wK4AT7I+o6Bj5OT3DjseCAFmR4LLwewXR85xyckXrIr1KzNt7MQUSKKak590ej4dCpSaclDq3rYC3Y0g1IxyfM51hgoDoAPwMAKhBOiHFFRj4c7C6ZgKkM7S0VAy6vfmro64HukQYqhQC2Cy70sd1ZlAZd7gk3nnC5D/aXx2GhcvmMe0Kl/HZcjyZYg4KKVW4i7s+c/TpnlUsWN/e1KoniWtZMk+OSBFYpNTUiVXpEYahJKIvJI38m68GB/Gp/H1N5oxkp1dMiPj+wfWl5ix</latexit>

�γrf(x0)
<latexit sha1_base64="aFGMmX7LrnAqIE9XwCzGhq3R0/g=">AAACBXicZZBLS8NAFIUn9VXrKyqu3AS7aaGWRAS3RQVdiFTpC0wpN9PbOHRmEjJTTQmu/R1uFXfi1t/Rf2OqdVFzVofv3HvhHi/kTGnbnhi5hcWl5ZX8amFtfWNzy9zeaalgFFFs0oAHUccDhZxJbGqmOXbCCEF4HNve8Gyatx8wUiyQDT0OsSvAl2zAKOgU9cy9Q9cHIcByJXgcrEEp7tnlnlm0q/aPrKxxZqZIZqr3zInbD+hIoNSUg1J3jh3qbgKRZpTjU8EdKQyBDsHHBIQSoO8zUI2FNw+nYypEOk/jkWQ06P+7GnMd6whSqFALYHIQSJ00mEBlXeOjdRsIkH9penYal86Zz7SqXKVlyMpFhDgsZ1bSLpz/n2dN66jqpP7muFg7nbWSJ/vkgJSIQ05IjVySOmkSShLyQl7Jm/FsvBsfxufvaM6Y7eySORlf39HzmK4=</latexit><latexit sha1_base64="aFGMmX7LrnAqIE9XwCzGhq3R0/g=">AAACBXicZZBLS8NAFIUn9VXrKyqu3AS7aaGWRAS3RQVdiFTpC0wpN9PbOHRmEjJTTQmu/R1uFXfi1t/Rf2OqdVFzVofv3HvhHi/kTGnbnhi5hcWl5ZX8amFtfWNzy9zeaalgFFFs0oAHUccDhZxJbGqmOXbCCEF4HNve8Gyatx8wUiyQDT0OsSvAl2zAKOgU9cy9Q9cHIcByJXgcrEEp7tnlnlm0q/aPrKxxZqZIZqr3zInbD+hIoNSUg1J3jh3qbgKRZpTjU8EdKQyBDsHHBIQSoO8zUI2FNw+nYypEOk/jkWQ06P+7GnMd6whSqFALYHIQSJ00mEBlXeOjdRsIkH9penYal86Zz7SqXKVlyMpFhDgsZ1bSLpz/n2dN66jqpP7muFg7nbWSJ/vkgJSIQ05IjVySOmkSShLyQl7Jm/FsvBsfxufvaM6Y7eySORlf39HzmK4=</latexit><latexit sha1_base64="aFGMmX7LrnAqIE9XwCzGhq3R0/g=">AAACBXicZZBLS8NAFIUn9VXrKyqu3AS7aaGWRAS3RQVdiFTpC0wpN9PbOHRmEjJTTQmu/R1uFXfi1t/Rf2OqdVFzVofv3HvhHi/kTGnbnhi5hcWl5ZX8amFtfWNzy9zeaalgFFFs0oAHUccDhZxJbGqmOXbCCEF4HNve8Gyatx8wUiyQDT0OsSvAl2zAKOgU9cy9Q9cHIcByJXgcrEEp7tnlnlm0q/aPrKxxZqZIZqr3zInbD+hIoNSUg1J3jh3qbgKRZpTjU8EdKQyBDsHHBIQSoO8zUI2FNw+nYypEOk/jkWQ06P+7GnMd6whSqFALYHIQSJ00mEBlXeOjdRsIkH9penYal86Zz7SqXKVlyMpFhDgsZ1bSLpz/n2dN66jqpP7muFg7nbWSJ/vkgJSIQ05IjVySOmkSShLyQl7Jm/FsvBsfxufvaM6Y7eySORlf39HzmK4=</latexit><latexit sha1_base64="aFGMmX7LrnAqIE9XwCzGhq3R0/g=">AAACBXicZZBLS8NAFIUn9VXrKyqu3AS7aaGWRAS3RQVdiFTpC0wpN9PbOHRmEjJTTQmu/R1uFXfi1t/Rf2OqdVFzVofv3HvhHi/kTGnbnhi5hcWl5ZX8amFtfWNzy9zeaalgFFFs0oAHUccDhZxJbGqmOXbCCEF4HNve8Gyatx8wUiyQDT0OsSvAl2zAKOgU9cy9Q9cHIcByJXgcrEEp7tnlnlm0q/aPrKxxZqZIZqr3zInbD+hIoNSUg1J3jh3qbgKRZpTjU8EdKQyBDsHHBIQSoO8zUI2FNw+nYypEOk/jkWQ06P+7GnMd6whSqFALYHIQSJ00mEBlXeOjdRsIkH9penYal86Zz7SqXKVlyMpFhDgsZ1bSLpz/n2dN66jqpP7muFg7nbWSJ/vkgJSIQ05IjVySOmkSShLyQl7Jm/FsvBsfxufvaM6Y7eySORlf39HzmK4=</latexit>
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�γrf(x1)
<latexit sha1_base64="U1qETIcKTQPQCtHNoZvqiQINwcc=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAS3RQVdiFTpC0wJN9PbOHRmEjJTTSmu/R1uFXfi1t/Rf2OqcVFzVofv3HvhHi/kTGnLmhq5hcWl5ZX8amFtfWNzq7i901bBKKLYogEPoq4HCjmT2NJMc+yGEYLwOHa84dks7zxgpFggm3ocYk+AL9mAUdAJcot7h44PQoDpSPA4mINy7NoVt1iyataPzKyxU1MiqRpucer0AzoSKDXloNSdbYW6N4FIM8rxqeCMFIZAh+DjBIQSoO8zUI2FNw9nYypEOk/jkWQ06P+7GnMd6wgSqFALYHIQSD1pMoHKvMZH8zYQIP/S5OwsLp8zn2lVvUrKkNWLCHFYyawkXdj/P8+a9lHNTvzNcal+mraSJ/vkgJSJTU5InVySBmkRSibkhbySN+PZeDc+jM/f0ZyR7uySORlf39N/mK8=</latexit><latexit sha1_base64="U1qETIcKTQPQCtHNoZvqiQINwcc=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAS3RQVdiFTpC0wJN9PbOHRmEjJTTSmu/R1uFXfi1t/Rf2OqcVFzVofv3HvhHi/kTGnLmhq5hcWl5ZX8amFtfWNzq7i901bBKKLYogEPoq4HCjmT2NJMc+yGEYLwOHa84dks7zxgpFggm3ocYk+AL9mAUdAJcot7h44PQoDpSPA4mINy7NoVt1iyataPzKyxU1MiqRpucer0AzoSKDXloNSdbYW6N4FIM8rxqeCMFIZAh+DjBIQSoO8zUI2FNw9nYypEOk/jkWQ06P+7GnMd6wgSqFALYHIQSD1pMoHKvMZH8zYQIP/S5OwsLp8zn2lVvUrKkNWLCHFYyawkXdj/P8+a9lHNTvzNcal+mraSJ/vkgJSJTU5InVySBmkRSibkhbySN+PZeDc+jM/f0ZyR7uySORlf39N/mK8=</latexit><latexit sha1_base64="U1qETIcKTQPQCtHNoZvqiQINwcc=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAS3RQVdiFTpC0wJN9PbOHRmEjJTTSmu/R1uFXfi1t/Rf2OqcVFzVofv3HvhHi/kTGnLmhq5hcWl5ZX8amFtfWNzq7i901bBKKLYogEPoq4HCjmT2NJMc+yGEYLwOHa84dks7zxgpFggm3ocYk+AL9mAUdAJcot7h44PQoDpSPA4mINy7NoVt1iyataPzKyxU1MiqRpucer0AzoSKDXloNSdbYW6N4FIM8rxqeCMFIZAh+DjBIQSoO8zUI2FNw9nYypEOk/jkWQ06P+7GnMd6wgSqFALYHIQSD1pMoHKvMZH8zYQIP/S5OwsLp8zn2lVvUrKkNWLCHFYyawkXdj/P8+a9lHNTvzNcal+mraSJ/vkgJSJTU5InVySBmkRSibkhbySN+PZeDc+jM/f0ZyR7uySORlf39N/mK8=</latexit><latexit sha1_base64="U1qETIcKTQPQCtHNoZvqiQINwcc=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAS3RQVdiFTpC0wJN9PbOHRmEjJTTSmu/R1uFXfi1t/Rf2OqcVFzVofv3HvhHi/kTGnLmhq5hcWl5ZX8amFtfWNzq7i901bBKKLYogEPoq4HCjmT2NJMc+yGEYLwOHa84dks7zxgpFggm3ocYk+AL9mAUdAJcot7h44PQoDpSPA4mINy7NoVt1iyataPzKyxU1MiqRpucer0AzoSKDXloNSdbYW6N4FIM8rxqeCMFIZAh+DjBIQSoO8zUI2FNw9nYypEOk/jkWQ06P+7GnMd6wgSqFALYHIQSD1pMoHKvMZH8zYQIP/S5OwsLp8zn2lVvUrKkNWLCHFYyawkXdj/P8+a9lHNTvzNcal+mraSJ/vkgJSJTU5InVySBmkRSibkhbySN+PZeDc+jM/f0ZyR7uySORlf39N/mK8=</latexit>

�γrf(x2)
<latexit sha1_base64="p/+sGlCGAyln2Y4gGHFnyD8XTfA=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWpAhuiwq6EKnSF9gSbqa3cejMJGSm2hJc+zvcKu7Erb+j/8ZU46LNWR2+c++Fe9yAM6Uta2pklpZXVtey67mNza3tnfzuXkv5o5Bik/rcDzsuKORMYlMzzbEThAjC5dh2h+ezvP2IoWK+bOhJgD0BnmQDRkHHyMkfHHc9EALMrgSXgzkojp1qyckXrIr1KzNt7MQUSKK6k592+z4dCZSaclDq3rYC3Ysg1IxyfM51RwoDoEPwMAKhBOiHFFQT4c7D2ZgKkM7T8Ugy6vcXro65HusQYqhQC2By4EsdNZhAZd7gk3nnC5D/aXx2FhcvmMe0Kl/HZcjyZYg4LKVW4i7sxc/TplWt2LG/PSnUzpJWsuSQHJEisckpqZErUidNQklEXskbeTdejA/j0/j6G80Yyc4+mZPx/QPVC5iw</latexit><latexit sha1_base64="p/+sGlCGAyln2Y4gGHFnyD8XTfA=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWpAhuiwq6EKnSF9gSbqa3cejMJGSm2hJc+zvcKu7Erb+j/8ZU46LNWR2+c++Fe9yAM6Uta2pklpZXVtey67mNza3tnfzuXkv5o5Bik/rcDzsuKORMYlMzzbEThAjC5dh2h+ezvP2IoWK+bOhJgD0BnmQDRkHHyMkfHHc9EALMrgSXgzkojp1qyckXrIr1KzNt7MQUSKK6k592+z4dCZSaclDq3rYC3Ysg1IxyfM51RwoDoEPwMAKhBOiHFFQT4c7D2ZgKkM7T8Ugy6vcXro65HusQYqhQC2By4EsdNZhAZd7gk3nnC5D/aXx2FhcvmMe0Kl/HZcjyZYg4LKVW4i7sxc/TplWt2LG/PSnUzpJWsuSQHJEisckpqZErUidNQklEXskbeTdejA/j0/j6G80Yyc4+mZPx/QPVC5iw</latexit><latexit sha1_base64="p/+sGlCGAyln2Y4gGHFnyD8XTfA=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWpAhuiwq6EKnSF9gSbqa3cejMJGSm2hJc+zvcKu7Erb+j/8ZU46LNWR2+c++Fe9yAM6Uta2pklpZXVtey67mNza3tnfzuXkv5o5Bik/rcDzsuKORMYlMzzbEThAjC5dh2h+ezvP2IoWK+bOhJgD0BnmQDRkHHyMkfHHc9EALMrgSXgzkojp1qyckXrIr1KzNt7MQUSKK6k592+z4dCZSaclDq3rYC3Ysg1IxyfM51RwoDoEPwMAKhBOiHFFQT4c7D2ZgKkM7T8Ugy6vcXro65HusQYqhQC2By4EsdNZhAZd7gk3nnC5D/aXx2FhcvmMe0Kl/HZcjyZYg4LKVW4i7sxc/TplWt2LG/PSnUzpJWsuSQHJEisckpqZErUidNQklEXskbeTdejA/j0/j6G80Yyc4+mZPx/QPVC5iw</latexit><latexit sha1_base64="p/+sGlCGAyln2Y4gGHFnyD8XTfA=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWpAhuiwq6EKnSF9gSbqa3cejMJGSm2hJc+zvcKu7Erb+j/8ZU46LNWR2+c++Fe9yAM6Uta2pklpZXVtey67mNza3tnfzuXkv5o5Bik/rcDzsuKORMYlMzzbEThAjC5dh2h+ezvP2IoWK+bOhJgD0BnmQDRkHHyMkfHHc9EALMrgSXgzkojp1qyckXrIr1KzNt7MQUSKK6k592+z4dCZSaclDq3rYC3Ysg1IxyfM51RwoDoEPwMAKhBOiHFFQT4c7D2ZgKkM7T8Ugy6vcXro65HusQYqhQC2By4EsdNZhAZd7gk3nnC5D/aXx2FhcvmMe0Kl/HZcjyZYg4LKVW4i7sxc/TplWt2LG/PSnUzpJWsuSQHJEisckpqZErUidNQklEXskbeTdejA/j0/j6G80Yyc4+mZPx/QPVC5iw</latexit>

�γrf(x3)
<latexit sha1_base64="eCdqolKqiYBWcYvpflrgzjx8ty8=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAW3RQVdiFTpC2wJN9PbOHRmEjJTbQmu/R1uFXfi1t/Rf2OqcdHmrA7fuffCPW7AmdKWNTEyC4tLyyvZ1dza+sbmVn57p6n8YUixQX3uh20XFHImsaGZ5tgOQgThcmy5g/Np3nrEUDFf1vU4wK4AT7I+o6Bj5OT3DjseCAFmR4LLwewXR85xyckXrIr1KzNt7MQUSKKak590ej4dCpSaclDq3rYC3Y0g1IxyfM51hgoDoAPwMAKhBOiHFFRj4c7C6ZgKkM7S0VAy6vfmro64HukQYqhQC2Cy70sd1ZlAZd7gk3nnC5D/aXx2GhcvmMe0Kl/HZcjyZYg4KKVW4i7s+c/TpnlUsWN/e1KoniWtZMk+OSBFYpNTUiVXpEYahJKIvJI38m68GB/Gp/H1N5oxkp1dMiPj+wfWl5ix</latexit><latexit sha1_base64="eCdqolKqiYBWcYvpflrgzjx8ty8=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAW3RQVdiFTpC2wJN9PbOHRmEjJTbQmu/R1uFXfi1t/Rf2OqcdHmrA7fuffCPW7AmdKWNTEyC4tLyyvZ1dza+sbmVn57p6n8YUixQX3uh20XFHImsaGZ5tgOQgThcmy5g/Np3nrEUDFf1vU4wK4AT7I+o6Bj5OT3DjseCAFmR4LLwewXR85xyckXrIr1KzNt7MQUSKKak590ej4dCpSaclDq3rYC3Y0g1IxyfM51hgoDoAPwMAKhBOiHFFRj4c7C6ZgKkM7S0VAy6vfmro64HukQYqhQC2Cy70sd1ZlAZd7gk3nnC5D/aXx2GhcvmMe0Kl/HZcjyZYg4KKVW4i7s+c/TpnlUsWN/e1KoniWtZMk+OSBFYpNTUiVXpEYahJKIvJI38m68GB/Gp/H1N5oxkp1dMiPj+wfWl5ix</latexit><latexit sha1_base64="eCdqolKqiYBWcYvpflrgzjx8ty8=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAW3RQVdiFTpC2wJN9PbOHRmEjJTbQmu/R1uFXfi1t/Rf2OqcdHmrA7fuffCPW7AmdKWNTEyC4tLyyvZ1dza+sbmVn57p6n8YUixQX3uh20XFHImsaGZ5tgOQgThcmy5g/Np3nrEUDFf1vU4wK4AT7I+o6Bj5OT3DjseCAFmR4LLwewXR85xyckXrIr1KzNt7MQUSKKak590ej4dCpSaclDq3rYC3Y0g1IxyfM51hgoDoAPwMAKhBOiHFFRj4c7C6ZgKkM7S0VAy6vfmro64HukQYqhQC2Cy70sd1ZlAZd7gk3nnC5D/aXx2GhcvmMe0Kl/HZcjyZYg4KKVW4i7s+c/TpnlUsWN/e1KoniWtZMk+OSBFYpNTUiVXpEYahJKIvJI38m68GB/Gp/H1N5oxkp1dMiPj+wfWl5ix</latexit><latexit sha1_base64="eCdqolKqiYBWcYvpflrgzjx8ty8=">AAACBXicZZBLS8NAFIUn9VXrqyqu3AS7aaGWRAW3RQVdiFTpC2wJN9PbOHRmEjJTbQmu/R1uFXfi1t/Rf2OqcdHmrA7fuffCPW7AmdKWNTEyC4tLyyvZ1dza+sbmVn57p6n8YUixQX3uh20XFHImsaGZ5tgOQgThcmy5g/Np3nrEUDFf1vU4wK4AT7I+o6Bj5OT3DjseCAFmR4LLwewXR85xyckXrIr1KzNt7MQUSKKak590ej4dCpSaclDq3rYC3Y0g1IxyfM51hgoDoAPwMAKhBOiHFFRj4c7C6ZgKkM7S0VAy6vfmro64HukQYqhQC2Cy70sd1ZlAZd7gk3nnC5D/aXx2GhcvmMe0Kl/HZcjyZYg4KKVW4i7s+c/TpnlUsWN/e1KoniWtZMk+OSBFYpNTUiVXpEYahJKIvJI38m68GB/Gp/H1N5oxkp1dMiPj+wfWl5ix</latexit>

�γrf(x0)
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ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma*

University of Amsterdam, OpenAI
dpkingma@openai.com

Jimmy Lei Ba⇤
University of Toronto

jimmy@psi.utoronto.ca

ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with
very noisy and/or sparse gradients. The hyper-parameters have intuitive interpre-
tations and typically require little tuning. Some connections to related algorithms,
on which Adam was inspired, are discussed. We also analyze the theoretical con-
vergence properties of the algorithm and provide a regret bound on the conver-
gence rate that is comparable to the best known results under the online convex
optimization framework. Empirical results demonstrate that Adam works well in
practice and compares favorably to other stochastic optimization methods. Finally,
we discuss AdaMax, a variant of Adam based on the infinity norm.

1 INTRODUCTION

Stochastic gradient-based optimization is of core practical importance in many fields of science and
engineering. Many problems in these fields can be cast as the optimization of some scalar parameter-
ized objective function requiring maximization or minimization with respect to its parameters. If the
function is differentiable w.r.t. its parameters, gradient descent is a relatively efficient optimization
method, since the computation of first-order partial derivatives w.r.t. all the parameters is of the same
computational complexity as just evaluating the function. Often, objective functions are stochastic.
For example, many objective functions are composed of a sum of subfunctions evaluated at different
subsamples of data; in this case optimization can be made more efficient by taking gradient steps
w.r.t. individual subfunctions, i.e. stochastic gradient descent (SGD) or ascent. SGD proved itself
as an efficient and effective optimization method that was central in many machine learning success
stories, such as recent advances in deep learning (Deng et al., 2013; Krizhevsky et al., 2012; Hinton
& Salakhutdinov, 2006; Hinton et al., 2012a; Graves et al., 2013). Objectives may also have other
sources of noise than data subsampling, such as dropout (Hinton et al., 2012b) regularization. For
all such noisy objectives, efficient stochastic optimization techniques are required. The focus of this
paper is on the optimization of stochastic objectives with high-dimensional parameters spaces. In
these cases, higher-order optimization methods are ill-suited, and discussion in this paper will be
restricted to first-order methods.

We propose Adam, a method for efficient stochastic optimization that only requires first-order gra-
dients with little memory requirement. The method computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the gradients; the name Adam
is derived from adaptive moment estimation. Our method is designed to combine the advantages
of two recently popular methods: AdaGrad (Duchi et al., 2011), which works well with sparse gra-
dients, and RMSProp (Tieleman & Hinton, 2012), which works well in on-line and non-stationary
settings; important connections to these and other stochastic optimization methods are clarified in
section 5. Some of Adam’s advantages are that the magnitudes of parameter updates are invariant to
rescaling of the gradient, its stepsizes are approximately bounded by the stepsize hyperparameter,
it does not require a stationary objective, it works with sparse gradients, and it naturally performs a
form of step size annealing.

⇤Equal contribution. Author ordering determined by coin flip over a Google Hangout.
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Abstract
We present a new family of subgradient methods that dynamically incorporate knowledge of the
geometry of the data observed in earlier iterations to perform more informative gradient-based
learning. Metaphorically, the adaptation allows us to find needles in haystacks in the form of very
predictive but rarely seen features. Our paradigm stems from recent advances in stochastic op-
timization and online learning which employ proximal functions to control the gradient steps of
the algorithm. We describe and analyze an apparatus for adaptively modifying the proximal func-
tion, which significantly simplifies setting a learning rate and results in regret guarantees that are
provably as good as the best proximal function that can be chosen in hindsight. We give several
efficient algorithms for empirical risk minimization problems with common and important regu-
larization functions and domain constraints. We experimentally study our theoretical analysis and
show that adaptive subgradient methods outperform state-of-the-art, yet non-adaptive, subgradient
algorithms.
Keywords: subgradient methods, adaptivity, online learning, stochastic convex optimization

1. Introduction

In many applications of online and stochastic learning, the input instances are of very high di-
mension, yet within any particular instance only a few features are non-zero. It is often the case,
however, that infrequently occurring features are highly informative and discriminative. The infor-
mativeness of rare features has led practitioners to craft domain-specific feature weightings, such as
TF-IDF (Salton and Buckley, 1988), which pre-emphasize infrequently occurring features. We use
this old idea as a motivation for applying modern learning-theoretic techniques to the problem of
online and stochastic learning, focusing concretely on (sub)gradient methods.

∗. A preliminary version of this work was published in COLT 2010.

c⃝2011 John Duchi, Elad Hazan and Yoram Singer.
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An Introduction to
the Conjugate Gradient Method
Without the Agonizing Pain

Edition 114
Jonathan Richard Shewchuk

August 4, 1994

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

The Conjugate Gradient Method is the most prominent iterative method for solving sparse systems of linear equations.
Unfortunately, many textbook treatments of the topic are written with neither illustrations nor intuition, and their
victims can be found to this day babbling senselessly in the corners of dusty libraries. For this reason, a deep,
geometric understanding of the method has been reserved for the elite brilliant few who have painstakingly decoded
the mumblings of their forebears. Nevertheless, the Conjugate GradientMethod is a composite of simple, elegant ideas
that almost anyone can understand. Of course, a reader as intelligent as yourself will learn them almost effortlessly.

The idea of quadratic forms is introduced and used to derive the methods of Steepest Descent, Conjugate Directions,
and Conjugate Gradients. Eigenvectors are explained and used to examine the convergence of the Jacobi Method,
SteepestDescent, andConjugateGradients. Other topics include preconditioning and the nonlinear ConjugateGradient
Method. I have taken pains to make this article easy to read. Sixty-six illustrations are provided. Dense prose is
avoided. Concepts are explained in several different ways. Most equations are coupled with an intuitive interpretation.

Supported in part by the Natural Sciences and Engineering Research Council of Canada under a 1967 Science and Engineering
Scholarship and by the National Science Foundation under Grant ASC-9318163. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either express or implied, of
NSERC, NSF, or the U.S. Government.

• Extension: Nonlinear conjugate gradient descent 

• Use consecutive gradient directions to generate 
better search directions (conjugate directions) 

• Use line search along the new search directions 

• Keywords: Fletcher-Reeves, Polak–Ribière
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Newton’s method = adaptive gradient descent

General update scheme:
xt+1 = xt �H(xt)rf(xt),

where H(x) 2 Rd⇥d is some matrix.

Newton’s method: H = r2f(xt)�1.

Gradient descent: H = �I.

Newton’s method: “adaptive gradient descent”, adaptation is w.r.t. the local geometry
of the function at xt.

EPFL Machine Learning and Optimization Laboratory 27/29
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• Second-order very useful when the dimension is not too high; 
otherwise storage of the Hessian becomes prohibitive (O(n2)) 

• When the function has many saddle-points, Newton’s method 
needs to be modified 

• Variable-metric methods provide an efficient alternative, e.g., BFGS 
(Broyden, Fletcher, Goldfarb, Shanno) and L-BFGS

SIAM J. OPTIMIZATION
Vol. 1, No. 1, pp. 1-17, February 1991

(C) 1991 Society for Industrial and Applied Mathematics
001

VARIABLE METRIC METHOD FOR MINIMIZATION*

WILLIAM C. DAVIDONf

Abstract. This is a method for determining numerically local minima of differentiable functions of
several variables. In the process of locating each minimum, a matrix which characterizes the behavior of
the function about the minimum is determined. For a region in which the function depends quadratically
on the variables, no more than N iterations are required, where N is the number of variables. By suitable
choice of starting values, and without modification of the procedure, linear constraints can be imposed
upon the variables.

Key words, variable metric algorithms, quasi-Newton, optimization

AMS(MOS) subject classifications, primary, 65K10; secondary, 49D37, 65K05, 90C30

A belated preface for ANL 5990. Enrico Fermi and Nicholas Metropolis used one
of the first digital computers, the Los Alamos Maniac, to determine which values of
certain theoretical parameters (phase shifts) best fit experimental data (scattering cross
sections) [8]. They varied one theoretical parameter at a time by steps of the same
magnitude, and when no such increase or decrease in any one parameter further
improved the fit to the experimental data, they halved the step size and repeated the
process until the steps were deemed sufficiently small. Their simple procedure was
slow but sure, and several of us used it on the Avidac computer at the Argonne National
Laboratory for adjusting six theoretical parameters to fit the pion-proton scattering
data we had gathered using the University of Chicago synchrocyclotron [9]. To see
how accurately the six parameters were determined, I varied them from their optimum
values, and used the resulting degradations in the fit to estimate a six-by-six error
matrix. This matrix approximates the inverse of a Hessian matrix of second derivatives
of the objective function f, and specifies a metric in the space of gradients Tf. Conjugate
displacements in the domain of a quadratic objective function change gradients by
amounts which are orthogonal with respect to this metric. The key ideas that led me
to the development of variable-metric algorithms were 1) to update a metric in the
space of gradients during the search for an optimum, rather than waiting until the
search was over, and 2) to accelerate convergence by using each updated metric to
choose the next search direction. In those days, we needed faster convergence to get
results in the few hours between expected failures of the Avidac’s large roomful of a
few thousand bytes of temperamental electrostatic memory.

Shortly after joining the theoretical physics group at Argonne National Laboratory
in 1956, I programmed the first variable-metric algorithms for the Avidac and used
them to analyze the scattering of pi mesons by protons [10]. In 1957, I submitted a
brief article about these algorithms to the Journal of Mathematics and Physics. This
article was rejected, partly because it lacked proofs of convergence. The referee also
found my notation "a bit bizarre," since I used "+" rather than "k+ 1" to denote
updated quantities, as in "x+ x + as" rather than "Xk+l Xk + akSk." While I then
turned to other research, another member of our theoretical physics group, Murray
Peshkin, modified and adapted one of these programs for Argonne’s IBM 650. An

* This belated preface was received by the editors June 4, 1990; accepted for publication August 10,
1990. The rest of this article was originally published as Argonne National Laboratory Research and
Development Report 5990, May 1959 (revised November 1959). This work was supported in part by University
of Chicago contract W-31-109-eng-38.

" Department of Mathematics, Haverford College, Haverford, Pennsylvania 19041-1392.
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Complicated!

Solution of a (parameterized) partial differential equation!

• Arises in many optimal control problems 

• Extremely costly is moderately high-dimensional 

• Certain tricks allow efficient optimization
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Sciences - Fundamental Concepts and Methods (2015) https://doi.org/10.2514/5.9781624102714.0063.0112

Hopeless?

Deceiving

Hard  
but doable?!

Nice!!
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“…in fact, the great watershed in optimization 
isn't between linearity and nonlinearity, but 
convexity and nonconvexity.” 
- R. Tyrrell Rockafellar, in SIAM Review, 1993 

CONVEX FUNCTIONS!
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“…in fact, the great watershed in optimization 
isn't between linearity and nonlinearity, but 
convexity and nonconvexity.” 
- R. Tyrrell Rockafellar, in SIAM Review, 1993 

“if it’s not convex, it’s not science” 
- attributed to Emmanuel Candes, undated 

CONVEX FUNCTIONS!
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f(x)

x

Convex set

x

Convex function
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f(x)

x

Convex set

x

Convex function

Every local minimum is a global minimum!
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min
x2Rn

f(x)

s.t. Ax  b .
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min
x2Rn

f(x)

s.t. Ax  b .

s.t. xTAx  1 .

s.t. A0 + x1A1 + . . .+ xnAn � 0 .
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LP: linear program 
QP: quadratic program  
SOCP second-order cone program 
SDP: semidefinite program 
CP: cone program  
GFP: graph form program

• Each category has a standard form and 
associated generic solvers 

• Many engineering problems can be 
formulated as one of these problems and 
efficiently solved with theoretical guarantees 

• Convergence guarantees and rates can be 
proven under certain conditions  

• Interior-point methods as fundamental 
breakthrough
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BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 42, Number 1, Pages 39–56
S 0273-0979(04)01040-7
Article electronically published on September 21, 2004

THE INTERIOR-POINT REVOLUTION IN OPTIMIZATION:
HISTORY, RECENT DEVELOPMENTS,

AND LASTING CONSEQUENCES

MARGARET H. WRIGHT

Abstract. Interior methods are a pervasive feature of the optimization land-
scape today, but it was not always so. Although interior-point techniques,
primarily in the form of barrier methods, were widely used during the 1960s
for problems with nonlinear constraints, their use for the fundamental prob-
lem of linear programming was unthinkable because of the total dominance
of the simplex method. During the 1970s, barrier methods were superseded,
nearly to the point of oblivion, by newly emerging and seemingly more efficient
alternatives such as augmented Lagrangian and sequential quadratic program-
ming methods. By the early 1980s, barrier methods were almost universally
regarded as a closed chapter in the history of optimization.

This picture changed dramatically in 1984, when Narendra Karmarkar an-
nounced a fast polynomial-time interior method for linear programming; in
1985, a formal connection was established between his method and classical
barrier methods. Since then, interior methods have continued to transform
both the theory and practice of constrained optimization. We present a con-
densed, unavoidably incomplete look at classical material and recent research
about interior methods.

1. Overview

REVOLUTION:
(i) a sudden, radical, or complete change;
(ii) a fundamental change in political organization, especially the
overthrow or renunciation of one government or ruler and the sub-
stitution of another.1

It can be asserted with a straight face that the field of continuous optimization
has undergone a revolution since 1984 in the sense of the first definition and that
the second definition applies in a philosophical sense: Because the interior-point
presence in optimization today is ubiquitous, it is easy to lose sight of the magnitude
and depth of the shifts that have occurred during the past twenty years. Building
on the implicit political metaphor of our title, successful revolutions eventually
become the status quo.

The interior-point revolution, like many other revolutions, includes old ideas that
are rediscovered or seen in a different light, along with genuinely new ideas. The

Received by the editors July 9, 2004, and, in revised form, August 17, 2004.
2000 Mathematics Subject Classification. Primary 49M37, 65K05, 90C30.
Lecture presented at the AMS Special Session on Current Events, Joint Mathematics Meetings,

Phoenix, AZ, January 9, 2004.
1Merriam Webster’s Collegiate Dictionary, Seventh Edition, 1965.

c⃝2004 American Mathematical Society
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• Choice, run time, and applicability of different methods depend on 
the specific properties of the convex functions and the constraints   

• Keywords: Strongly convex, smooth, non-smooth, constrained, 
unconstrained,… 

• Optimal convergence rates (in function value and iterates) can be 
proven for many algorithms for specific classes of convex function 
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Sqrt-Lasso [2,3] simultaneously 
estimates the unknown noise 
variance σ but still needs to select a 
tuning parameter γ via CV or BIC.'
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!  Lasso is a popular method for high-dimensional variable 
selection, but difficult to tune in practice.  

!  We introduce TREX, an alternative to Lasso with an inherent 
calibration to all aspects of the linear model. This renders 
TREX an estimator that does not require tuning parameters.  

!  TREX can outperform cross-validated Lasso in terms of 
variable selection and computational efficiency.  

!  Bootstrapped TREX (B-TREX) provides improved variable 
selection and ranked lists of variables. 

!  We illustrate the performance of TREX on synthetic and on 
biological data sets from genomics and proteomics.  

Summary(

From(Lasso(to(TREX(

TREX(objecIve(and(soluIon( Biological(examples(

Ongoing(work(and(improvements(

SyntheIc(benchmarks(

Figure(1.'Average'run@mes'and'Hamming'distances'(to'true'support)'on'
synthe@c'normal'data'generated'using'(Model)'with'parameters'n=100,'
p=500,'β*'='[1,1,1,1,1,0,…,0])'and'offRdiagonal'correla@on'matrix'entries''
κ'='0'(first'column),'κ'='0.5'(second'column),'and'κ'='0.9'(third'column).''

Figure(2.'Ribflavin'produc@on'rates'Y'of'n=71'different'B.'sub@lis'strains'
and'corresponding'p=4088'gene'expression'profiles'[5].'The'main'
objec@ve'is'to'find'a'small'set'of'genes'that'well'predict'the'rates.''
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 TREX
 B−TREX

Riboflavin production in B. subtilis
(Lederer & Müller ’14, cf. Bühlmann et al. ’14)

Rank Gene Frequency

1 YXLE 0.58
2 YOAB 0.52 StabSel
3 YXLD 0.52 StabSel
4 YCKE 0.45
5 LYSC 0.42 StabSel
6 XTRA 0.42
7 YFHE_r 0.42
8 YPGA 0.39
9 YDDK 0.35
10 YEBC 0.35
...

...
...

with  but remain manageable. The bottom contains the Hamming distances for the three estimators considered in the

paper and for Lasso with the standard Cross-Validation replaced by alternative tuning parameter calibration schemes:

Lasso with the largest tuning parameter that leads to a 10-fold cross-validated mean squared error within one standard

deviation of the minimal error (Lasso-1SE); Lasso with the BIC criterion for tuning parameter calibration (Lasso-BIC).

We observe in particular that B-TREX outmatches all competing estimators for all considered parameter values.
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Figure 2: Runtimes and Hamming distances for the synthetic data with  = 0 (first column),  = 0.5 (second column),

and  = 0.9 (third column).

2

!  Theoretical guarantees for prediction performance of TREX 
established and available soon [8].   

!  A fast optimization method with global convergence 
guarantees for the non-convex TREX objective developed 
and soon available [8]. 

!  TREX successfully used as building block for GTREX, an 
adaptive neighborhood selection scheme for graphical model 
inference [9].  

!  Further applications of (G)TREX to real-world problems. 
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entries) of a vector v by support(v) and the `q�norm and
the maximum norm of v by kvkq and kvk1, respectively.

TREX and B-TREX
We now introduce two novel estimators for high-
dimensional linear regression: TREX and B-TREX. To mo-
tivate these estimators, let us first detail on the calibration of
Lasso. Recall that for a fixed tuning parameter � > 0, Lasso
is a minimizer of a least-squares criterion with `1-penalty:

b�Lasso(�) 2 argmin
�2Rp

⇢
kY � X�k

2
2

n
+ �k�k1

�
. (Lasso)

The tuning parameter � determines the intensity of the reg-
ularization and is therefore highly influential, and it is well
understood that a reasonable choice is of the order

� ⇠
�kX>✏k1

n
.

For example, this becomes apparent when looking at the
following prediction bound for Lasso (cf. (Koltchinskii,
Lounici, and Tsybakov 2011; Rigollet and Tsybakov 2011),
see also (Dalalyan, Hebiri, and Lederer 2014) for an
overview of Lasso prediction).
Lemma 1. If � � 2�kX>✏k1/n, it holds

kX b�Lasso(�) � X�⇤
k
2
2

n
 2�k�⇤

k1.

This suggests a tuning parameter � that is small (since
the bound is proportional to �) but not too small (to satisfy
the condition � & �kX>✏k1/n). In practice, however, the
corresponding calibration is very difficult, because it needs
to incorporate several, often unknown, aspects of the model:
(a) the design matrix X;
(b) the standard deviation of the noise �;
(c) the tail behavior of the noise vector ✏.

While one line of research approaches (a) and describes
the calibration of Lasso to the design matrix (van de
Geer and Lederer 2013; Hebiri and Lederer 2013; Dalalyan,
Hebiri, and Lederer 2014), Square-Root Lasso approaches
(b) and eliminates the calibration to the standard deviation
of the noise. To elucidate the latter approach, we first recall
that for a fixed tuning parameter � > 0, Square-Root Lasso
is defined similarly as Lasso:

b�p
Lasso(�) 2 argmin

�2Rp

⇢
kY � X�k2

p
n

+ �k�k1

�
.

(Square-Root Lasso)
Square-Root Lasso also requires a tuning parameter � to
determine the intensity of the regularization. However, the
tuning parameter should here be of the order (see, for exam-
ple, (Belloni, Chernozhukov, and Wang 2011))

� ⇠
kX>✏k1

n
,

so that Square-Root Lasso does not require a calibration to
the standard deviation of the noise. The origin of this fea-
ture can be readily located: Reformulating the definition of

Square-Root Lasso as

b�p
Lasso(�) 2 argmin

�2Rp

8
<

:

kY �X�k2
2

n
kY �X�k2p

n

+ �k�k1

9
=

;

identifies the factor kY � X�k2/
p

n in the denominator of
the first term as the distinction to Lasso. This additional fac-
tor acts as an inherent estimator of the standard deviation of
the noise � and makes therefore the calibration to � obso-
lete. On the other hand, Square-Root Lasso still contains a
tuning parameter that needs to be adjusted to (a) the design
matrix and (c) the tail behavior of the noise vector.

We now develop the Square-Root Lasso approach fur-
ther to address all aspects (a), (b), and (c). For this,
we aim at incorporating an inherent estimation not of �
but rather of the entire quantity of interest �kX>✏k1/n.
For this, note that if b� is a consistent estimator of �⇤,
then �kX>(Y � X b�)k1/n is a consistent estimator of
�kX>✏k1/n. In this spirit, we define TREX1 according to

b�TREX 2 argmin
�2Rp

⇢
kY � X�k

2
2

1
2kX>(Y � X�)k1

+ k�k1

�
.

(TREX)
Square-Root Lasso and Lasso are equivalent families of es-
timators (there is a one-to-one mapping between the tuning
parameter paths of Square-Root Lasso and Lasso); in con-
trast, TREX is a single, tuning-free estimator, and its solu-
tion is in general not on the tuning parameter paths of Lasso
and Square-Root Lasso. However, we can establish an inter-
esting relationship between these paths and TREX (we omit
all proofs for sake of brevity):
Theorem 1. It holds that

min
�2Rp

(
kY � X�k

2
2

1
2kX>(Y � X�)k1

+ k�k1

such that kX>(Y � X�)k1  kX>Y k1

)

= min
0u2kX>Y k1/n

(
min
�2Rp

(
kY � X�k

2
2

u
+ k�k1

such that
1

2
kX>(Y � X�)k1 = u

))
.

In view of the Karush-Kuhn-Tucker conditions for Lasso,
the latter formulation strongly resembles the Lasso path.
This resemblance is no surprise: In fact, any consistent
estimator b� of �⇤ is related to a Lasso solution with an
optimal (but in practice unknown) tuning parameter � ⇠

�kX>✏k1/n via the formulation of TREX:

Lemma 2. Assume that b� a consistent estimator of �⇤
and

e� 2 argmin
�2Rp

(
kY � X�k

2
2

1
2kX>(Y � X b�)k1

+ k�k1

)
.

1We call this new approach TREX to emphasize that it aims at
Tuning-free Regression that adapts to the Entire noise �✏ and the
design matrix X .
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SqrtRLasso'

TREX'idea'

Lasso [1] requires the tuning of the 
regularization parameter λ via 
heuristic methods such as cross-
validation (CV) or the Bayesian 
information criterion (BIC). '

Theory suggest to choose: '

Theory suggest to choose: '

Incorporate an inherent estimation of the entire quantity 
of interest ' into the estimator!'

:H XVH WKH IDFW WKDW LI �̂ LV D FRQVLVWHQW HVWLPDWRU
RI �� WKHQ �||<8(= � <)�̂)��/R LV D FRQVLVWHQW
HVWLPDWRU RI �||<8���/R� :H WKXV GHILQH WKH 75(;�
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 Measured rate
 Lasso−CV
 TREX
 B−TREX

Lasso-CV genes �̂ TREX genes �̂ B-TREX genes frequencies

YOAB at -0.232 YXLD at -0.219 YXLE at 0.58

YXLD at -0.206 YOAB at -0.168 YOAB at 0.52

ARGF at -0.191 ARGF at -0.112 YXLD at 0.52

XHLB at -0.138 YEBC at -0.088 YCKE at 0.45

YXLE at -0.105 YCKE at -0.069 LYSC at 0.42

YEBC at -0.105 YCGO at -0.065 XTRA at 0.42

LYSC at -0.066 YEZB at -0.049 YFHE r at 0.42

YDDK at -0.063 YFHE r at -0.041 YPGA at 0.39

SPOVAA at -0.057 YHZA at -0.030 YDDK at 0.35

YCLB at -0.053 YDDK at -0.024 YEBC at 0.35

YHDS r at -0.051 LYSC at -0.024 XLYA at 0.32

DNAJ at -0.049 RPLL at -0.022 YHDS r at 0.29

YFHE r at -0.045 YXLE at -0.019 YTGB at 0.29

YKBA at -0.043 YYDA at -0.015 YYDA at 0.29

YQJU at -0.041 YCDH at -0.015 ARGF at 0.26

GAPB at -0.035 YBFI at -0.007 RPLL at 0.26

YYDA at -0.033 YHDS r at -0.006 XKDS at 0.26

YTGB at -0.030 SPOVAA at -0.003 YHCL at 0.26

YBFI at -0.022 PKSA at -0.003 YRVJ at 0.26

YFIO at -0.021 YDDH at -0.001 YURQ at 0.26

Figure 2: Gene rankings for riboflavin production in B. subtilis. The left panel contains the 20 genes

with largest coefficients in Lasso-CV (out of 38 genes with non-zero coefficients) and the associated

coefficients. The center panel contains the 20 genes with non-zero coefficients in TREX and the

associated coefficients. The right panel contains the 20 B-TREX genes with largest frequencies and

the associated frequencies.

4.2 Biological example: Riboflavin production in B. subtilis

We next consider a recently published high-dimensional biological data set for the production of

riboflavin (vitamin B2) in B. subtilis (Bacillus subtilis) [27]. The data set comprises expression

profiles of p = 4088 genes of different B. subtilis strains for a total of n = 71 experiments with

varying settings. The corresponding expression profiles are stored in the matrix X � R71�4088
.

Along with these expression profiles, the associated standardized riboflavin log-production rates

Y � R71
have been measured. The main objective is now to identify a small set of genes that is

highly predictive for the riboflavin production rate. Since B. subtilis is one of the main industrially

exploited sources for riboflavin, subsequent genetic modifications of the identified genes may then

improve the industrial production of riboflavin. Bühlmann et al. [27] analyze the data set with

various tools from high-dimensional statistics, including causal modeling, covariance selection, and

Lasso based regression. We reproduce their regression results and compare them with the result

provided by TREX and B-TREX.

We first report the outcome of the Lasso based approaches detailed in [27]. The runtime for the

computation of a single Lasso path with the MATLAB routine is approximately 19 seconds. Lasso-

CV selects 38 genes, that is, its solution has 38 non-zero coefficients; the 20 genes with largest

coefficients and the associated coefficient are listed in Table 2. We also depict the fit of the Lasso-

CV solution to the standardized riboflavin log-production rates in Figure 3. To obtain a smaller set

of genes, Bühlmann et al. apply a stability selection scheme [28] based on 500 subsamples of size

⇥n
2 ⇤ and the 20 coefficients that enter the corresponding Lasso paths first. This stability selection

scheme selects three genes: LYSC at, YOAB at, and YXLD at.

We now approach the biological example with TREX and B-TREX. For this, we apply TREX and

B-TREX with the same parameters as in the synthetic example. The runtime for a single TREX

computation is then approximately 18 seconds. TREX selects 20 genes and therefore provides a

considerably sparser solution than Lasso-CV; the corresponding genes and the associated coeffi-

cients are listed in Table 2. B-TREX with b = 31 sequential bootstraps and the standard majority

vote selects three genes: YXLE at, YOAB at, and YXLD at. The outcomes of B-TREX with se-

lection rules different from majority vote can be deduced from Table 2, where we list the selection

frequencies of the 20 genes that are selected most frequently across the bootstraps. We finally depict

the fit of the TREX and B-TREX solutions to the standardized riboflavin log-production rates in

Figure 3.

A joint comparison of the solutions of Lasso-CV, TREX, and B-TREX reveals four key insights:

First, the set of genes selected by TREX and the set of the 20 genes corresponding to the highest

7

Figure(3.'LeB:'Best'fit'of'different'models'LassoRCV'with'38'genes,'TREX'
with'20'genes,'and'BRTREX'with'three'genes.'Right:'Top'10'list'of'genes,'
found'by'BRTREX'(and'the'three'genes'found'by'stability'selec@on'[6]).''
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Figure(4.'Mean'10Rfold'CV'classifica@on'erros'vs.'average'number'of'
predictors'for'various'methods'((I)SIS,'Elas@c'net,'and'PED'taken'from'[7]).'

Data: MS scans of serum 
samples (p=500 protein mass 
over charge intensities) from 
101 Stage I and 104 Stage 
IV patients [7]. 
Objective: Find a small set 
of discriminatory proteins.'

An often encountered scenario is that there are more 
variables than measurements, i.e., p>>n 
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Likelihood term
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Likelihood term Sparsity
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Likelihood term Sparsity

tuning parameter

min
β�Rp
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�Y � Xβ�22 + λ�β�1
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• Many high-dimensional statistics problems are non-smooth 
convex problems (e.g., Lasso, structured sparsity, …)  

• Proximity operator as fundamental building block 

• Efficient schemes and exact convergence guarantees
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T his article reviews recent advances in convex opti-
mization algorithms for big data, which aim to 
reduce the computational, storage, and communica-
tions bottlenecks. We provide an overview of this 
emerging field, describe contemporary approxima-

tion techniques such as first-order methods and randomization 
for scalability, and survey the important role of parallel and dis-
tributed computation. The new big data algorithms are based on 
surprisingly simple principles and attain staggering accelera-
tions even on classical problems. 

CONVEX OPTIMIZATION IN THE WAKE OF BIG DATA
Convexity in signal processing dates back to the dawn of the 
field, with problems like least squares (LS) being ubiquitous 
across nearly all subareas. However, the importance of convex 
formulations and optimization has increased even more dra-
matically in the last decade due to the rise of new theory for 
structured sparsity and rank minimization, and successful sta-
tistical learning models such as support vector machines. These 
formulations are now employed in a wide variety of signal pro-
cessing applications including compressive sensing, medical 
imaging, geophysics, and bioinformatics [1]–[4]. 

There are several important reasons for this explosion of 
interest, with two of the most obvious being the existence of 
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Up until about 2010, (proximal) gradient descent the way to go…

Since then many developments…
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T his article reviews recent advances in convex opti-
mization algorithms for big data, which aim to 
reduce the computational, storage, and communica-
tions bottlenecks. We provide an overview of this 
emerging field, describe contemporary approxima-

tion techniques such as first-order methods and randomization 
for scalability, and survey the important role of parallel and dis-
tributed computation. The new big data algorithms are based on 
surprisingly simple principles and attain staggering accelera-
tions even on classical problems. 

CONVEX OPTIMIZATION IN THE WAKE OF BIG DATA
Convexity in signal processing dates back to the dawn of the 
field, with problems like least squares (LS) being ubiquitous 
across nearly all subareas. However, the importance of convex 
formulations and optimization has increased even more dra-
matically in the last decade due to the rise of new theory for 
structured sparsity and rank minimization, and successful sta-
tistical learning models such as support vector machines. These 
formulations are now employed in a wide variety of signal pro-
cessing applications including compressive sensing, medical 
imaging, geophysics, and bioinformatics [1]–[4]. 

There are several important reasons for this explosion of 
interest, with two of the most obvious being the existence of 
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Up until about 2010, (proximal) gradient descent the way to go…

• Function is high-dimensional but convex 

• Adaptive gradient descent (ADAGRAD) or 
Nesterov acceleration became popular 

• Stochastic gradient descent increasingly 
used 

• Distributed optimization as novel paradigm

Since then many developments…
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Stochastic gradient descent

Many objective functions are sum structured:

f(x) =
1

n

nX

i=1

fi(x).

Example: fi is the cost function of the i-th observation, taken from a training set of n

observation.

Evaluating rf(x) of a sum-structured function is expensive (sum of n gradients).

EPFL Machine Learning and Optimization Laboratory 16/24
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Stochastic gradient descent: the algorithm

choose x0 2 Rd.

sample i 2 [n] uniformly at random

xt+1 := xt � �trfi(xt).

for times t = 0, 1, . . . , and stepsizes �t � 0.

Only update with the gradient of fi instead of the full gradient!

Iteration is n times cheaper than in full gradient descent.

The vector gt := rfi(xt) is called a stochastic gradient.

gt is a vector of d random variables, but we will also simply call this a random variable.

EPFL Machine Learning and Optimization Laboratory 17/24
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Mini-batch SGD

Instead of using a single element fi, use an average of several of them:

g̃t :=
1

m

mX

j=1

gj
t .

Extreme cases:
m = 1 , SGD as originally defined
m = n , full gradient descent

Benefit: Gradient computation can be naively parallelized

EPFL Machine Learning and Optimization Laboratory 4/23
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ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with
very noisy and/or sparse gradients. The hyper-parameters have intuitive interpre-
tations and typically require little tuning. Some connections to related algorithms,
on which Adam was inspired, are discussed. We also analyze the theoretical con-
vergence properties of the algorithm and provide a regret bound on the conver-
gence rate that is comparable to the best known results under the online convex
optimization framework. Empirical results demonstrate that Adam works well in
practice and compares favorably to other stochastic optimization methods. Finally,
we discuss AdaMax, a variant of Adam based on the infinity norm.

1 INTRODUCTION

Stochastic gradient-based optimization is of core practical importance in many fields of science and
engineering. Many problems in these fields can be cast as the optimization of some scalar parameter-
ized objective function requiring maximization or minimization with respect to its parameters. If the
function is differentiable w.r.t. its parameters, gradient descent is a relatively efficient optimization
method, since the computation of first-order partial derivatives w.r.t. all the parameters is of the same
computational complexity as just evaluating the function. Often, objective functions are stochastic.
For example, many objective functions are composed of a sum of subfunctions evaluated at different
subsamples of data; in this case optimization can be made more efficient by taking gradient steps
w.r.t. individual subfunctions, i.e. stochastic gradient descent (SGD) or ascent. SGD proved itself
as an efficient and effective optimization method that was central in many machine learning success
stories, such as recent advances in deep learning (Deng et al., 2013; Krizhevsky et al., 2012; Hinton
& Salakhutdinov, 2006; Hinton et al., 2012a; Graves et al., 2013). Objectives may also have other
sources of noise than data subsampling, such as dropout (Hinton et al., 2012b) regularization. For
all such noisy objectives, efficient stochastic optimization techniques are required. The focus of this
paper is on the optimization of stochastic objectives with high-dimensional parameters spaces. In
these cases, higher-order optimization methods are ill-suited, and discussion in this paper will be
restricted to first-order methods.

We propose Adam, a method for efficient stochastic optimization that only requires first-order gra-
dients with little memory requirement. The method computes individual adaptive learning rates for
different parameters from estimates of first and second moments of the gradients; the name Adam
is derived from adaptive moment estimation. Our method is designed to combine the advantages
of two recently popular methods: AdaGrad (Duchi et al., 2011), which works well with sparse gra-
dients, and RMSProp (Tieleman & Hinton, 2012), which works well in on-line and non-stationary
settings; important connections to these and other stochastic optimization methods are clarified in
section 5. Some of Adam’s advantages are that the magnitudes of parameter updates are invariant to
rescaling of the gradient, its stepsizes are approximately bounded by the stepsize hyperparameter,
it does not require a stationary objective, it works with sparse gradients, and it naturally performs a
form of step size annealing.

⇤Equal contribution. Author ordering determined by coin flip over a Google Hangout.
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Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2t indicates the elementwise
square gt � gt. Good default settings for the tested machine learning problems are ↵ = 0.001,
�1 = 0.9, �2 = 0.999 and ✏ = 10�8. All operations on vectors are element-wise. With �

t
1 and �

t
2

we denote �1 and �2 to the power t.
Require: ↵: Stepsize
Require: �1,�2 2 [0, 1): Exponential decay rates for the moment estimates
Require: f(✓): Stochastic objective function with parameters ✓
Require: ✓0: Initial parameter vector

m0  0 (Initialize 1st moment vector)
v0  0 (Initialize 2nd moment vector)
t 0 (Initialize timestep)
while ✓t not converged do
t t+ 1
gt  r✓ft(✓t�1) (Get gradients w.r.t. stochastic objective at timestep t)
mt  �1 ·mt�1 + (1� �1) · gt (Update biased first moment estimate)
vt  �2 · vt�1 + (1� �2) · g2t (Update biased second raw moment estimate)
bmt  mt/(1� �

t
1) (Compute bias-corrected first moment estimate)

bvt  vt/(1� �
t
2) (Compute bias-corrected second raw moment estimate)

✓t  ✓t�1 � ↵ · bmt/(
p
bvt + ✏) (Update parameters)

end while
return ✓t (Resulting parameters)

In section 2 we describe the algorithm and the properties of its update rule. Section 3 explains
our initialization bias correction technique, and section 4 provides a theoretical analysis of Adam’s
convergence in online convex programming. Empirically, our method consistently outperforms other
methods for a variety of models and datasets, as shown in section 6. Overall, we show that Adam is
a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2 ALGORITHM

See algorithm 1 for pseudo-code of our proposed algorithm Adam. Let f(✓) be a noisy objec-
tive function: a stochastic scalar function that is differentiable w.r.t. parameters ✓. We are in-
terested in minimizing the expected value of this function, E[f(✓)] w.r.t. its parameters ✓. With
f1(✓), ..., , fT (✓) we denote the realisations of the stochastic function at subsequent timesteps
1, ..., T . The stochasticity might come from the evaluation at random subsamples (minibatches)
of datapoints, or arise from inherent function noise. With gt = r✓ft(✓) we denote the gradient, i.e.
the vector of partial derivatives of ft, w.r.t ✓ evaluated at timestep t.

The algorithm updates exponential moving averages of the gradient (mt) and the squared gradient
(vt) where the hyper-parameters �1,�2 2 [0, 1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the 1st moment (the mean) and the
2nd raw moment (the uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero, especially
during the initial timesteps, and especially when the decay rates are small (i.e. the �s are close to 1).
The good news is that this initialization bias can be easily counteracted, resulting in bias-corrected
estimates bmt and bvt. See section 3 for more details.

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by changing
the order of computation, e.g. by replacing the last three lines in the loop with the following lines:
↵t = ↵ ·

p
1� �t

2/(1� �
t
1) and ✓t  ✓t�1 � ↵t ·mt/(

p
vt + ✏̂).

2.1 ADAM’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes. Assuming ✏ = 0, the
effective step taken in parameter space at timestep t is �t = ↵ · bmt/

p
bvt. The effective stepsize has

two upper bounds: |�t|  ↵ · (1 � �1)/
p
1� �2 in the case (1 � �1) >

p
1� �2, and |�t|  ↵

2
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(a) (b)

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

dropout noise is applied to the input layer and fully connected layer. The minibatch size is also set
to 128 similar to previous experiments.

Interestingly, although both Adam and Adagrad make rapid progress lowering the cost in the initial
stage of the training, shown in Figure 3 (left), Adam and SGD eventually converge considerably
faster than Adagrad for CNNs shown in Figure 3 (right). We notice the second moment estimate bvt
vanishes to zeros after a few epochs and is dominated by the ✏ in algorithm 1. The second moment
estimate is therefore a poor approximation to the geometry of the cost function in CNNs comparing
to fully connected network from Section 6.2. Whereas, reducing the minibatch variance through
the first moment is more important in CNNs and contributes to the speed-up. As a result, Adagrad
converges much slower than others in this particular experiment. Though Adam shows marginal
improvement over SGD with momentum, it adapts learning rate scale for different layers instead of
hand picking manually as in SGD.
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Optimization Methods for Large-Scale Machine Learning

Léon Bottou⇤ Frank E. Curtis† Jorge Nocedal‡

February 12, 2018

Abstract

This paper provides a review and commentary on the past, present, and future of numerical
optimization algorithms in the context of machine learning applications. Through case studies
on text classification and the training of deep neural networks, we discuss how optimization
problems arise in machine learning and what makes them challenging. A major theme of our
study is that large-scale machine learning represents a distinctive setting in which the stochastic
gradient (SG) method has traditionally played a central role while conventional gradient-based
nonlinear optimization techniques typically falter. Based on this viewpoint, we present a com-
prehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior,
and highlight opportunities for designing algorithms with improved performance. This leads to
a discussion about the next generation of optimization methods for large-scale machine learning,
including an investigation of two main streams of research on techniques that diminish noise in
the stochastic directions and methods that make use of second-order derivative approximations.
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Abstract

It is widely observed that deep learning models with learned parameters generalize
well, even with much more model parameters than the number of training samples.
We systematically investigate the underlying reasons why deep neural networks
often generalize well, and reveal the difference between the minima (with the
same training error) that generalize well and those they don’t. We show that it
is the characteristics the landscape of the loss function that explains the good
generalization capability. For the landscape of loss function for deep networks, the
volume of basin of attraction of good minima dominates over that of poor minima,
which guarantees optimization methods with random initialization to converge
to good minima. We theoretically justify our findings through analyzing 2-layer
neural networks; and show that the low-complexity solutions have a small norm of
Hessian matrix with respect to model parameters. For deeper networks, extensive
numerical evidence helps to support our arguments.

1 Introduction

Recently, deep learning [13] has achieved remarkable success in various application areas. In spite
of its powerful modeling capability, we know little about why deep learning works so well from a
theoretical perspective. This is widely known as the “black-box” nature of deep learning.

One key observation is that, most of deep neural networks with learned parameters often generalize

very well empirically, even equipped with much more effective parameters than the number of training

samples, i.e. high-capacity. According to conventional statistical learning theory (including VC
dimension [16] and Rademacher complexity measure [3]), in such over-parameterized and non-convex
models, the system is easy to get stuck into local minima that generalize badly. Some regularizations
are required to control the generalization error. However, as shown in [22], high-capacity neural
networks without any regularization can still obtain low complexity solutions and generalize well;
and suitable regularization only helps to improve the test error to a small margin. Thus, statistical
learning theory cannot explain the generalization ability of deep learning models.

It is worthy of noting that we call the solutions (or minima) with the same and small training error
“good ” or “bad” if they have significant difference of generalization performance, i.e. test accuracy.
Take the task of MNIST digit classification as an example, with the same 100% training accuracy,
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Abstract

It is widely observed that deep learning models with learned parameters generalize
well, even with much more model parameters than the number of training samples.
We systematically investigate the underlying reasons why deep neural networks
often generalize well, and reveal the difference between the minima (with the
same training error) that generalize well and those they don’t. We show that it
is the characteristics the landscape of the loss function that explains the good
generalization capability. For the landscape of loss function for deep networks, the
volume of basin of attraction of good minima dominates over that of poor minima,
which guarantees optimization methods with random initialization to converge
to good minima. We theoretically justify our findings through analyzing 2-layer
neural networks; and show that the low-complexity solutions have a small norm of
Hessian matrix with respect to model parameters. For deeper networks, extensive
numerical evidence helps to support our arguments.

1 Introduction

Recently, deep learning [13] has achieved remarkable success in various application areas. In spite
of its powerful modeling capability, we know little about why deep learning works so well from a
theoretical perspective. This is widely known as the “black-box” nature of deep learning.

One key observation is that, most of deep neural networks with learned parameters often generalize

very well empirically, even equipped with much more effective parameters than the number of training

samples, i.e. high-capacity. According to conventional statistical learning theory (including VC
dimension [16] and Rademacher complexity measure [3]), in such over-parameterized and non-convex
models, the system is easy to get stuck into local minima that generalize badly. Some regularizations
are required to control the generalization error. However, as shown in [22], high-capacity neural
networks without any regularization can still obtain low complexity solutions and generalize well;
and suitable regularization only helps to improve the test error to a small margin. Thus, statistical
learning theory cannot explain the generalization ability of deep learning models.

It is worthy of noting that we call the solutions (or minima) with the same and small training error
“good ” or “bad” if they have significant difference of generalization performance, i.e. test accuracy.
Take the task of MNIST digit classification as an example, with the same 100% training accuracy,
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Abstract

There are many surprising and perhaps counter-intuitive properties of optimization
of deep neural networks. We propose and experimentally verify a unified phe-
nomenological model of the loss landscape that incorporates many of them. High
dimensionality plays a key role in our model. Our core idea is to model the loss
landscape as a set of high dimensional wedges that together form a large-scale,
inter-connected structure and towards which optimization is drawn. We first show
that hyperparameter choices such as learning rate, network width and L2 regular-
ization, affect the path optimizer takes through the landscape in a similar ways,
influencing the large scale curvature of the regions the optimizer explores. Finally,
we predict and demonstrate new counter-intuitive properties of the loss-landscape.
We show an existence of low loss subspaces connecting a set (not only a pair)
of solutions, and verify it experimentally. Finally, we analyze recently popular
ensembling techniques for deep networks in the light of our model.

1 Introduction

The optimization of deep neural networks is still relatively poorly understood. One intriguing property
is that despite their massive over-parametrization, their optimization dynamics is surprisingly simple
in many respects. For instance, Li et al. [2018a] show that in spite of the typically very high number
of trainable parameters, constraining optimization to a small number of randomly chosen directions
often suffices to reach a comparable accuracy. Fort and Scherlis [2018] extend this observation and
analyze its geometrically implications for the landscape; Goodfellow et al. [2014] show that there is a
smooth path connecting initialization and the final minima. Another work shows how it is possible to
train only a small percentage of weights, while reaching a good final test performance [Frankle and
Carbin, 2019].

Inspired by these and some other investigations we propose a phenomenological model for the loss
surface of deep networks. We model the loss surface as a union of n-dimensional (lower dimension
than the full space, although still very high) manifolds that we call n-wedges, see Figure 1. Our
model is capable of giving predictions that match previous experiments (such as low-dimensionality
of optimization), as well as give new predictions.

First, we show how common regularizers (learning rate, batch size, L2 regularization, dropout, and
network width) all influence the optimization trajectory in a similar way. We find that increasing
their regularization strength leads, up to some point, to a similar effect: increasing width of the radial
tunnel (see Figure 2 and Section 3.3 for discussion) the optimization travels. This presents a next step

⇤This work was done as a part of the Google AI Residency program.
†This work was partially done while the author was an intern at Google Zurich.

Preprint. Under review.
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Abstract

It is widely observed that deep learning models with learned parameters generalize
well, even with much more model parameters than the number of training samples.
We systematically investigate the underlying reasons why deep neural networks
often generalize well, and reveal the difference between the minima (with the
same training error) that generalize well and those they don’t. We show that it
is the characteristics the landscape of the loss function that explains the good
generalization capability. For the landscape of loss function for deep networks, the
volume of basin of attraction of good minima dominates over that of poor minima,
which guarantees optimization methods with random initialization to converge
to good minima. We theoretically justify our findings through analyzing 2-layer
neural networks; and show that the low-complexity solutions have a small norm of
Hessian matrix with respect to model parameters. For deeper networks, extensive
numerical evidence helps to support our arguments.

1 Introduction

Recently, deep learning [13] has achieved remarkable success in various application areas. In spite
of its powerful modeling capability, we know little about why deep learning works so well from a
theoretical perspective. This is widely known as the “black-box” nature of deep learning.

One key observation is that, most of deep neural networks with learned parameters often generalize

very well empirically, even equipped with much more effective parameters than the number of training

samples, i.e. high-capacity. According to conventional statistical learning theory (including VC
dimension [16] and Rademacher complexity measure [3]), in such over-parameterized and non-convex
models, the system is easy to get stuck into local minima that generalize badly. Some regularizations
are required to control the generalization error. However, as shown in [22], high-capacity neural
networks without any regularization can still obtain low complexity solutions and generalize well;
and suitable regularization only helps to improve the test error to a small margin. Thus, statistical
learning theory cannot explain the generalization ability of deep learning models.

It is worthy of noting that we call the solutions (or minima) with the same and small training error
“good ” or “bad” if they have significant difference of generalization performance, i.e. test accuracy.
Take the task of MNIST digit classification as an example, with the same 100% training accuracy,
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Abstract

There are many surprising and perhaps counter-intuitive properties of optimization
of deep neural networks. We propose and experimentally verify a unified phe-
nomenological model of the loss landscape that incorporates many of them. High
dimensionality plays a key role in our model. Our core idea is to model the loss
landscape as a set of high dimensional wedges that together form a large-scale,
inter-connected structure and towards which optimization is drawn. We first show
that hyperparameter choices such as learning rate, network width and L2 regular-
ization, affect the path optimizer takes through the landscape in a similar ways,
influencing the large scale curvature of the regions the optimizer explores. Finally,
we predict and demonstrate new counter-intuitive properties of the loss-landscape.
We show an existence of low loss subspaces connecting a set (not only a pair)
of solutions, and verify it experimentally. Finally, we analyze recently popular
ensembling techniques for deep networks in the light of our model.

1 Introduction

The optimization of deep neural networks is still relatively poorly understood. One intriguing property
is that despite their massive over-parametrization, their optimization dynamics is surprisingly simple
in many respects. For instance, Li et al. [2018a] show that in spite of the typically very high number
of trainable parameters, constraining optimization to a small number of randomly chosen directions
often suffices to reach a comparable accuracy. Fort and Scherlis [2018] extend this observation and
analyze its geometrically implications for the landscape; Goodfellow et al. [2014] show that there is a
smooth path connecting initialization and the final minima. Another work shows how it is possible to
train only a small percentage of weights, while reaching a good final test performance [Frankle and
Carbin, 2019].

Inspired by these and some other investigations we propose a phenomenological model for the loss
surface of deep networks. We model the loss surface as a union of n-dimensional (lower dimension
than the full space, although still very high) manifolds that we call n-wedges, see Figure 1. Our
model is capable of giving predictions that match previous experiments (such as low-dimensionality
of optimization), as well as give new predictions.

First, we show how common regularizers (learning rate, batch size, L2 regularization, dropout, and
network width) all influence the optimization trajectory in a similar way. We find that increasing
their regularization strength leads, up to some point, to a similar effect: increasing width of the radial
tunnel (see Figure 2 and Section 3.3 for discussion) the optimization travels. This presents a next step
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Abstract

It is widely observed that deep learning models with learned parameters generalize
well, even with much more model parameters than the number of training samples.
We systematically investigate the underlying reasons why deep neural networks
often generalize well, and reveal the difference between the minima (with the
same training error) that generalize well and those they don’t. We show that it
is the characteristics the landscape of the loss function that explains the good
generalization capability. For the landscape of loss function for deep networks, the
volume of basin of attraction of good minima dominates over that of poor minima,
which guarantees optimization methods with random initialization to converge
to good minima. We theoretically justify our findings through analyzing 2-layer
neural networks; and show that the low-complexity solutions have a small norm of
Hessian matrix with respect to model parameters. For deeper networks, extensive
numerical evidence helps to support our arguments.

1 Introduction

Recently, deep learning [13] has achieved remarkable success in various application areas. In spite
of its powerful modeling capability, we know little about why deep learning works so well from a
theoretical perspective. This is widely known as the “black-box” nature of deep learning.

One key observation is that, most of deep neural networks with learned parameters often generalize

very well empirically, even equipped with much more effective parameters than the number of training

samples, i.e. high-capacity. According to conventional statistical learning theory (including VC
dimension [16] and Rademacher complexity measure [3]), in such over-parameterized and non-convex
models, the system is easy to get stuck into local minima that generalize badly. Some regularizations
are required to control the generalization error. However, as shown in [22], high-capacity neural
networks without any regularization can still obtain low complexity solutions and generalize well;
and suitable regularization only helps to improve the test error to a small margin. Thus, statistical
learning theory cannot explain the generalization ability of deep learning models.

It is worthy of noting that we call the solutions (or minima) with the same and small training error
“good ” or “bad” if they have significant difference of generalization performance, i.e. test accuracy.
Take the task of MNIST digit classification as an example, with the same 100% training accuracy,
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Abstract

Neural networks provide a rich class of high-dimensional, non-convex optimization problems.
Despite their non-convexity, gradient-descent methods often successfully optimize these mod-
els. This has motivated a recent spur in research attempting to characterize properties of
their loss surface that may explain such success.

In this paper, we address this phenomenon by studying a key topological property of the
loss: the presence or absence of spurious valleys, defined as connected components of sub-level
sets that do not include a global minimum. Focusing on a class of one-hidden-layer neural
networks defined by smooth (but generally non-linear) activation functions, we identify a
notion of intrinsic dimension and show that it provides necessary and sufficient conditions
for the absence of spurious valleys. More concretely, finite intrinsic dimension guarantees that
for sufficiently overparametrised models no spurious valleys exist, independently of the data
distribution. Conversely, infinite intrinsic dimension implies that spurious valleys do exist
for certain data distributions, independently of model overparametrisation. Besides these
positive and negative results, we show that, although spurious valleys may exist in general,
they are confined to low risk levels and avoided with high probability on overparametrised
models.

1. Introduction

Modern machine learning applications involve datasets of increasing dimensionality, com-
plexity and size, which in turn motivate the use of high-dimensional, non-linear models, as
illustrated in many deep learning algorithms across computer vision, speech and natural lan-
guage understanding. The prevalent strategy for learning is to rely on Stochastic Gradient
Descent (SGD) methods, that typically operate on non-convex objectives. In this context, an
outstanding goal is to provide a theoretical framework that explains under what conditions
– relating input data distribution, choice of architecture and choice of optimization scheme –
this setup will be successful.

More precisely, let �✓ : R
n ! R

m denote a model class parametrized by ✓ 2 ⇥ ✓ R
P ,

which in the case of Neural Networks (NNs) contains the aggregated weights across all layers.
In a supervised learning setting, this model is deployed on some data (X,Y) random variable

c�2019 Luca Venturi, Afonso S. Bandeira and Joan Bruna.
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.

1 Introduction

Training neural networks requires minimizing a high-dimensional non-convex loss function – a
task that is hard in theory, but sometimes easy in practice. Despite the NP-hardness of training
general neural loss functions [3], simple gradient methods often find global minimizers (parameter
configurations with zero or near-zero training loss), even when data and labels are randomized before
training [43]. However, this good behavior is not universal; the trainability of neural nets is highly
dependent on network architecture design choices, the choice of optimizer, variable initialization, and
a variety of other considerations. Unfortunately, the effect of each of these choices on the structure of
the underlying loss surface is unclear. Because of the prohibitive cost of loss function evaluations
(which requires looping over all the data points in the training set), studies in this field have remained
predominantly theoretical.

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
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Abstract

Training neural networks involves finding min-
ima of a high-dimensional non-convex loss func-
tion. Relaxing from linear interpolations, we con-
struct continuous paths between minima of re-
cent neural network architectures on CIFAR10
and CIFAR100. Surprisingly, the paths are essen-
tially flat in both the training and test landscapes.
This implies that minima are perhaps best seen as
points on a single connected manifold of low loss,
rather than as the bottoms of distinct valleys.

1. Introduction

Neural networks have achieved remarkable success in prac-
tical applications such as object recognition (He et al., 2016;
Huang et al., 2017), machine translation (Bahdanau et al.,
2015; Vinyals & Le, 2015), speech recognition (Hinton
et al., 2012; Graves et al., 2013; Xiong et al., 2017) etc.
Theoretical insights on why neural networks can be trained
successfully despite their high-dimensional and non-convex
loss functions are few or based on strong assumptions such
as the eigenvalues of the Hessian at critical points being
random (Dauphin et al., 2014), linear activations (Choro-
manska et al., 2014; Kawaguchi, 2016) or wide hidden lay-
ers (Soudry & Carmon, 2016; Nguyen & Hein, 2017).

In the current literature, minima of the loss function are
typically depicted as points at the bottom of a strictly convex
valley of a certain width that reflects the generalisation of
the network, with network parameters given by the location
of the minimum (Keskar et al., 2016). This is also the
picture obtained when the loss function of neural networks
is visualised in low dimension (Li et al., 2017).

In this work, we conjecture that neural network loss minima
are not isolated points in parameter space, but essentially
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form a connected manifold. More precisely, we argue that
the part of the parameter space where the loss remains be-
low a certain low threshold forms one single connected
component.

We support the above claim by studying the energy land-
scape of several ResNets and DenseNets on CIFAR10 and
CIFAR100: For random pairs of minima, we construct con-
tinuous paths through parameter space for which the loss
remains very close to the value found directly at the minima.
An example for such a path is shown in Figure 1.

Figure 1. Left: A slice through the one million-dimensional train-
ing loss function of DenseNet-40-12 on CIFAR10 and the min-
imum energy path found by our method. The plane is spanned
by the two minima and the mean of the nodes of the path. Right:
Loss along the linear line segment between minima, and along our
high-dimensional path. Surprisingly, the energy along this path is
essentially flat.

Our main contribution is the finding of paths

1. that connect minima trained from different initialisa-
tions which are not related to each other via known
loss-conserving operations like rescaling,

2. along which the training loss remains essentially at the
same value as at the minima,

3. along which the test loss remains essentially constant
while the test error rate slightly increases.

The existence of such paths suggests that modern neural net-
works have enough parameters such that they can achieve
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