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3. CONCERNS

3.1. What Is the Optimization Objective?

A challenge of incorporating machine learning techniques into HEP data analysis is that
tools are often optimized for performance on a particular task that is several steps re-
moved from the ultimate physical goal of searching for a new particle or testing a new
physical theory. Moreover, some tools are used in multiple applications, which may have
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Optimization of differentiable components is efficiently handled with various forms of
stochastic gradient descent, although these algorithms often come with their own hyper-
parameters. The optimization with respect to hyperparameters that arise in the network
architecture, loss function, and learning algorithms are often performed through a black-box
optimization algorithm that does not require gradients. This includes Bayesian optimiza-
tion (94,95) and genetic algorithms (89), as well as variational optimization (96,97).
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op-ti-mi-za-tion

| aptemea’'zaSHaen, apte mi'zaSHan/

noun

noun: optimization; plural noun: optimizations; noun: optimisation; plural noun: optimisations
1. the action of making the best or most effective use of a situation or resource.

google dictionary
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op-ti-mi-za-tion

| aptemea’'zaSHaen, apte mi'zaSHan/

noun

noun: optimization; plural noun: optimizations; noun: optimisation; plural noun: optimisations
1. the action of making the best or most effective use of a situation or resource.

google dictionary

Mathematical optimization
Discipline
Description

Mathematical optimization or mathematical programming is the selection of a best element from
some set of available alternatives. Wikipedia

wikipedia
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Mathematical optimization (alternatively spelled optimisation) or
mathematical programming is the selection of a best element (with
regard to some criterion) from some set of available alternatives.!!

Optimization problems of sorts arise in all quantitative disciplines from
computer science and engineering to operations research and
economics, and the development of solution methods has been of
Interest in mathematics for centuries.[?]

wikipedia

1. "The Nature of Mathematical Programming Archived 2014-03-05 at the Wayback Machine," Mathematical Programming

Glossary, INFORMS Computing Society.
2. A Du, D. Z.; Pardalos, P. M.; Wu, W. (2008). "History of Optimization". In Floudas, C.; Pardalos, P. (eds.). Encyclopedia

of Optimization. Boston: Springer. pp. 1538—1542.


https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Mathematics
http://glossary.computing.society.informs.org/index.php?page=nature.html
https://web.archive.org/web/20140305080324/http://glossary.computing.society.informs.org/index.php?page=nature.html
https://en.wikipedia.org/wiki/Wayback_Machine
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The standard form of a continuous optimization problem isl']
minimmize f(x)
subject to  gi(z) <0, i=1,...,m
hij(z) =0, j=1,...,p
where

e f/: R” — R is the objective function to be minimized over the n-variable vector x,

e g/(x) <0 are called inequality constraints

° j(x) = () are called equality constraints, and

em=>0andp=>0.
If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization
problem. A maximization problem can be treated by negating the objective function.

wikipedia
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Mathematical model

e e Computer simulation

Real-world experiment



Black-box system
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Black-box system

Analog circuit design

f(x) eR



Black-box system

Deep Learning and Its

Application to LHC Physics

f(x) eR



x € R™ Black-box system f(x) eR

X1 Hyper-parameters
T in (deep) neural networks
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Ly

Ly is the triple (X, dx, f) consisting of
1. X = |l,u] C R® with ,u € R".

2. definition of neighborhood /similarity
based on a distance dx.

3. a black-box function f.
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Ly

Ly is the triple (X, dx, f) consisting of

1. X = |l,u] C R® with ,u € R".

2. definition of neighborhood /similarity
based on a distance dx.

3. a black-box function f.
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Topographic description:

e Peaks and valleys
e Plateaus and basins
e Ridges and funnels
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Lg is the triple (X, dx, f) consisting of

1. X = |l,u] C R® with ,u € R".

f(x) €R

2. definition of neighborhood /similarity
based on a distance dx.
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Lg is the triple (X, dx, f) consisting of

1. X = |l,u] C R® with ,u € R".

f(x) eR

2. definition of neighborhood /similarity
based on a distance dx.
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“The price of metaphor is eternal vigilance.”

Norbert Wiener

La condition humaine, René Magritte
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Proceedings of the Sixth International Congress on Genetics, 1932.
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Wright, S., “The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in Evolution,’
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Exploring protein fitness landscapes
by directed evolution

Philip A. Romero and Frances H. Arnold

" Abstract | Directed evolution circumvents our profound ignorance of how a

| protein’s sequence encodes its function by using iterative rounds of random
mutation and artificial selection to discover new and useful proteins. Proteins can
Darwin200 be tuned to adapt to new functions or environments by simple adaptive walks
involving small numbers of mutations. Directed evolution studies have shown how rapidly
some proteins can evolve under strong selection pressures and, because the entire ‘fossil
record’ of evolutionary intermediates is available for detailed study, they have provided new
insight into the relationship between sequence and function. Directed evolution has also
shown how mutations that are functionally neutral can set the stage for further adaptation.
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FITNESS LANDSCAPES AND
OPTIMIZATION

« Evolution can be seen as optimization process over a fithess landscapes.

* The optimization process is based on a population of individuals.

« Key operations are mutation and selection.




« Evolution can be seen as optimization process over a fitness landscapes.

* The optimization process is based on a population of individuals.

« Key operations are mutation and selection.

The entire field of evolutionary computation, a subfield of
continuous optimization, is based on this idea
(>100k publications).

Keywords: Genetic algorithms, genetic programs, Evolution
Strategies
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H + H2 & H2 + H reaction for a collinear collision geometry
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Fig. 5. Resonanzenergie von 3 geradlinig angeordneten H-Atomen als Funktion
der Abstdnde {,,Resonanzgebirge*).
aus der optischen Energiekurve von H, (Fig. 4) unter Vernachlassigung des
Couromsschen Anteils berechnet.
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7 September 1984, Volume 225, Number 4666 SCI E NCE

Packing Structures and
Transitions in Liquids and Solids

Frank H. Stillinger and Thomas A. Weber

Fig. 1. Schematic representation of the poten-
tial energy surface for an N-atom system.
Minima are shown as filled circles and saddle
points as crosses. Potential energy is constant
along the continuous curves. Regions belong-
ing to different minima are indicated by
dashed curves.
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M. P. Vecchi
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The transition process from gas Optimization by

to liquid to solid can be seen as Simulated Annealing

Opt|mlzat|on prOCeSS S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi
Ingredients:

* A procedure to explore local
configurations

* An temperature-dependent acceptance
criterion for new configurations

* An temperature annealing schedule
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The transition process from gas Optimization by

to liguid to solid can be seen as Simulated Annealing

Optlmlza'“on proceSS S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi
Ingredients: o

(Hill Climbing)

c A procedqre to explore local E;\i@@o " [‘ e
configurations SN

* An temperature-dependent acceptance | °
criterion for new configurations

* An temperature annealing schedule
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* Lennard-Jones potential as pair potential between noble gas atoms
* What is the best (lowest potential energy) configuration at temperature T = 07

* How does the energy landscape look like for N number of atoms?
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* A procedure to explore local R
configurations as best as possible O P
(e.g., a gradient descent)

« Simulated annealing
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* A procedure to explore local —
configurations as best as possible s e 5, 15 ot e B9
(e.g., a gradient descent)

« Simulated annealing

Energy

Figure 2. A schematic diagram illustrating the effects of our energy
transformation for a one-dimensional example. The solid line is the
energy of the original surface and the dashed line is the transformed
energy E.
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This face-centered cubic octahedron (fcc)
structure Is the global minimum.
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THE NEB METHOD

The "nudged elastic band” method (Jonsson et al. 1998)

-

Jonsson, H., Mills, G., and
Jacobsen, K. W.

Nudged elastic band method for
finding minimum energy paths of
transitions.

In Classical and quantum
dynamics in condensed phase
simulations, pp. 385-404. World
Scientific, 1998.
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ENERGY LANDSCAPES AND
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SIMONS COLLABORATION ON CRACKING THE GLASS PROBLEM

Our Team Affiliates Collaborators Alumni Tutorials Events Jobs Publications News

Figure (credit: Chiara Cammarota): A schematic rugged energy landscape
with a multitude of energy minima, maxima, and saddles. Arrows denote
some of the possible relaxation pathways.
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ENERGY LANDSCAPES AND
PROTEIN FOLDING

Science 13 Dec 1991:
, Vol. 254, Issue 5938, pp. 1598-1603
DOI: 10.1126/science. 1749933
{/% Articles
Entropy Unfolded
The Energy Landscapes and Motions

of Proteins

HANS FRAUENFELDER, STEPHEN G. SLIGAR, PETER G. WOLYNES
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NEWS - 22 JULY 2019

Al protein-folding algorithms solve structures

Protein Sequence faSterthanever
SQETRKKCTEMKKKFKNCEVRCDESNHCVEVR

Deep learning makes its mark on protein-structure prediction.
L]
Neural Network g <= % Databases

\ Build a single-funnel energy
redictions landscape approximation

Gradient descent
on landscape
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(A) Shift in “state” variables alters the community directly Antibiotics
oral hygiene

Community state
landscape

Alternative state 1

REVIEW

The Application of Ecological Theory
Toward an Understanding of the
Human Microbiome

Alternative state 2

Elizabeth K. Costello,* Keaton Stagaman,? Les Dethlefsen,>
Brendan ]. M. Bohannan,? David A. Relman®>*
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Shift in environmental “parameters” alters the community indirectly

Diet intervention,
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immunosuppressive drug
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The Application of Ecological Theory
Toward an Understanding of the
Human Microbiome

Elizabeth K. Costello,* Keaton Stagaman,? Les Dethlefsen,>
Brendan ]. M. Bohannan,? David A. Relman®>*
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—New York Review of Books

RICHARD
DAWKINS

CLIMBING
MOUNT
IMPROBABLE

v
4
=
A
[« 4
3
>
-
w
el
o
= |
w
o‘
2]
o
«©
3

Energy Landscapes

WIth Applications to Clusters, Blomolecules and Glasses

David ). Wales

Diss. ETH No. 19438 2010

Black-box Landscapes:
Characterization, Optimization, Sampling, and
Application to Geometric Configuration
Problems

Christian L. Miiller
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The standard form of a continuous optimization problem isl']

minimize f(z)
T

subject to  gi(z) <0, i=1,...,m

where

e f: R"” — R is the objective function to be minimized over the n-variable vector x,
e g:(x) <0 are called inequality constraints

e hi(x) =0 are called equality constraints, and

em=>0andp=>0.

If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization
problem. A maximization problem can be treated by negating the objective function.

wikipedia
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« What do you know about x € S ? i

Ly,
* What is the dimensionality of the problem?
» Does the function f(x) have special properties? What are good properties?

« Can you evaluate gradients or higher-order information of the function”



X1
L2

« What do you know about x € S ? i

Ly,
* What is the dimensionality of the problem?
» Does the function f(x) have special properties? What are good properties?

« Can you evaluate gradients or higher-order information of the function”

* How much does it cost (in computation time/experimental time) to evaluate
the function” How often can you evaluate it”

* |s the function value deterministic? Is it stochastic?

« How accurate does the solution need to be?
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Let's start with a simple scenario:
You know very little about f(x) but it is low-dimensional

You can only evaluate f(x), no higher order information

The domain of x is simple, say a hypercube

You can only evaluate f(x) a couple of times




PURE RANDOM SEARCH N STITUTE

Rastrigin, L.A. (1963). "The convergence of the random search
method in the extremal control of a many parameter system".
Automation and Remote Control. 24 (10): 1337—-1342.
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PURE RANDOM SEARCH

Rastrigin, L.A. (1963). "The convergence of the random search
method in the extremal control of a many parameter system".
Automation and Remote Control. 24 (10): 1337—-1342.

« Use it when you know very little about the function and the function is costly
« Useful when your input domain is simple, e.g., a hyper-cube

* Only requires function evaluations, no other information needed

» Better coverage than grid search




PURE RANDOM SEARCH M ST

Rastrigin, L.A. (1963). "The convergence of the random search
method in the extremal control of a many parameter system".
Automation and Remote Control. 24 (10): 1337—-1342.

« Use it when you know very little about the function and the function is costly

« Useful when your input domain is simple, e.g., a hyper-cube

* Only requires function evaluations, no other information needed

Better coverage than grid search

Grid Layout Random Layout

Journal of Machine Learning Research 13 (2012) 281-305 Submitted 3/11; Revised 9/11; Published 2/12

Random Search for Hyper-Parameter Optimization
James Bergstra JAMES .BERGSTRA @ UMONTREAL.CA
Yoshua Bengio YOSHUA.BENGIO @ UMONTREAL.CA

Département d’Informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC, H3C 3J7, Canada

Unimportant parameter

Unimportant parameter

Editor: Leon Bottou

Important parameter Important parameter
cited 3k times since 2012
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Sobol,l.M. (1967), "Distribution of points in a cube and
approximate evaluation of integrals". Zh. Vych. Mat. Mat. Fiz.
7: 784—-802 (in Russian); U.S.S.R Comput. Maths. Math.
Phys. 7: 86—112 (in English).
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Sobol,l.M. (1967), "Distribution of points in a cube and
approximate evaluation of integrals". Zh. Vych. Mat. Mat. Fiz.
7: 784-802 (in Russian); U.S.S.R Comput. Maths. Math.
Phys. 7: 86—112 (in English).

« Use quasi-random points rather than random ones to cover the space
» Better space-filling properties

» Works well for up to n=50 dimensions

* (Scrambled) Sobol sequences are good




QUASI-RANDOM SEARCH M ST

Sobol,l.M. (1967), "Distribution of points in a cube and
approximate evaluation of integrals". Zh. Vych. Mat. Mat. Fiz.
7: 784-802 (in Russian); U.S.S.R Comput. Maths. Math.

Phys. 7: 86—112 (in English).
« Use quasi-random points rather than random ones to cover the space

» Better space-filling properties

» Works well for up to n=50 dimensions

* (Scrambled) Sobol sequences are good

Pseudo-random points




\ INSTITUTE

Center for Computational
Mathematics

QUAS“RANDOM SEARCH q-FLATIRoN

Sobol,l.M. (1967), "Distribution of points in a cube and
approximate evaluation of integrals". Zh. Vych. Mat. Mat. Fiz.
7: 784-802 (in Russian); U.S.S.R Comput. Maths. Math.
Phys. 7: 86—112 (in English).

« Use quasi-random points rather than random ones to cover the space

Better space-filling properties

Works well for up to n=50 dimensions

(Scrambled) Sobol sequences are good
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QUASI-RANDOM SEARCH

Sobol,l.M. (1967), "Distribution of points in a cube and
approximate evaluation of integrals". Zh. Vych. Mat. Mat. Fiz.
7: 784-802 (in Russian); U.S.S.R Comput. Maths. Math.
Phys. 7: 86—112 (in English).

« Use quasi-random points rather than random ones to cover the space

Better space-filling properties
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DERIVATIVE-FREE OPTIMIZATION
AND EVOLUTION STRATEGIES

« Use it when you know very little about the function and the function is
not costly, i.e., you can evaluate O(n2) points

* Input domain is simple, e.g. a hyper-cube, not too high-dimensional

* Typically used in simulation-based optimization where only
function evaluations are available

* Popular method: Nelder-Mead Simplex method (not recommended)
Pattern search, Covariance Matrix Adaptation ES g

CMA-ES resources

http://www.cmap.polytechnique.fr/~nikolaus.hansen/
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A NOTE ON DESIGN PRINCIPLES
FOR OPTIMIZATION HEURISTICS

« Use invariance (symmetry) principles as much as possible
* (approximate) Invariance to affine transformations of the domain

* I[nvariance to monotone transformations of the objective function

e [nvariance to
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GRADIENT-FREE OPTIMIZATION

WITH CMA-ES
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The (u/u,,A)-CMA-ES in mathematical terms

sampling x9HD L m@ 4 5@ A (0, C<9)) fork=1,...,\.
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Evaluation Calculate fitness of all A individuals and sort them
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WITH CMA-ES

The (u/u,,A)-CMA-ES in mathematical terms

sampling x9HD L m@ 4 5@ A (0, C<9)) fork=1,...,\.
Evaluation Calculate fitness of all A individuals and sort them

H“ m)
Selection m' Y = sz‘xg;gfl) Z’wi =1, wi>2wy>...2w, >0

1=1 i=1
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WITH CMA-ES

The (u/u,,A)-CMA-ES in mathematical terms

sampling x9HD L m@ 4 5@ A (0, C<9)) fork=1,...,\.
Evaluation Calculate fitness of all A individuals and sort them
Iz m
Selection m(g'H) — wixgzgjl) Zwi =1, wmz2w>...2w, >0
i=1 i=1

Hcov

1
CUHD = (1 — epy)C@ + ;ﬂ P£g+1)pgg+1>i +Ceoy (1 — —)
CO

. . rank-one-update
Recombination

Adaptation X wa y(9+1)( §9+1)) ,

o

v

ank-p-update
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WITH CMA-ES

The (u/u,,A)-CMA-ES in mathematical terms

sampling x9HD L m@ 4 5@ A (0, C<9)) fork=1,...,\.
Evaluation Calculate fitness of all A individuals and sort them
Iz m
Selection m(g'H) = wW; X Egjl) Zwi =1, wmz2w>...2w, >0
i=1 i=1

CUOFD = (1 — eoy)CW + ¥ plotDple+D” o (1 - )
— o

Hcov =

=
a
2

rank-one-update

Recombination
Adaptation X wa vy (v §9+1)) ,

o

rank- /,z update

(g+1) _ (9) p¥ Y]]
o = o9’ exp —11].
E|IN(0,T)||




CMA-ES ON RASTRIGIN FUNCTION . erifor:

Rastrigin’s Function

FE) =10xn+S x2 =10 x cos(2mx, )
>l
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European Conference on the Applications of Evolutionary Computation
.. EvoApplications 2010: Applications of Evolutionary Computation pp 432-441 | Cite as

Gaussian Adaptation Revisited — An Entropic View on
Covariance Matrix Adaptation

Authors Authors and affiliations

Christian L. Miiller, Ivo F. Sbalzarini

The CMA Evolution Strategy: A Tutorial

Nikolaus Hansen
Inria
Research centre Saclay—ile-de-France
Université Paris-Saclay, LRI
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BAYESIAN OPTIMIZATION

« Bayesian optimization is a type of sequential design scheme

« An acquisition function guides the generation of a new
function evaluation that balances exploration and
exploitation

 Builds a surrogate model of the function (often with
Gaussian Processes) (see Directed Evolution example)

« Use it when you know very little about the function and the
function is costly and low-dimensional

* Input domain is simple, e.g. a hyper-cube
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BAYESIAN OPTIMIZATION

« Bayesian optimization is a type of sequential design scheme

Jonas Mockus

« An acquisition function guides the generation of a new
function evaluation that balances exploration and
exploitation

 Builds a surrogate model of the function (often with
Gaussian Processes) (see Directed Evolution example)

« Use it when you know very little about the function and the
function is costly and low-dimensional

° |npUt domain iIs Simple, €.Jd. a hyper-CUbe Practical Bayesian Optimization of Machine

Learning Algorithms

Jasper Snoek Hugo Larochelle
Department of Computer Science Department of Computer Science
University of Toronto University of Sherbrooke
jasper@cs.toronto.edu hugo.larochelle@usherbrooke.edu

Ryan P. Adams
School of Engineering and Applied Sciences
Harvard University
rpa@seas.harvard.edu
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BAYESIAN OPTIMIZATION

objective fn (f(-))

observation (x)

V¥ acquisition max

\ / acquisition function (u(-))
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BAYESIAN OPTIMIZATION

objective fn (f(-))

observation (x)

V¥ acquisition max

\ / acquisition function (u(-))

t=3

i - new observation (x,) l

v
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t=2

objective fn (f(-))
observation (x) ) fC)

V¥ acquisition max

\ / acquisition function (u(-))

t =3

new observation (x,)

posterior mean (u(-))

posterior uncertainty

(u(-) £o(-)) v
\f i4/7 T~ A —
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Ok, so far so good. But say, you know the gradient of the
function. What can we do then?
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f(x,y) = —(cosxx + cos2y)?
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gradient field
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f(x,y) = —(cosxx + cos2y)?

< //b :
/A ' T

e The function is smooth with Lipschitz constant L: | X
n \ws\‘:‘:Q‘:Q: "0’0'

e The gradient of the function f is available

* The function can be high-dimensional

DN
NI
N Q" N1
Rl

24

f(y) < f(X) + Vf(X)T(y — X) + g”x — y||27 Vx,y € RY. -

gradient field
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* The gradient of the function f is available Jix;y) = ~(cosxx + coszy)?

> A

» The function can be high-dimensional T,

» The function is smooth with Lipschitz constant L: [

% O%Y "“‘. 4' 0%
RSN XA
RSN
NSO
‘%%g%‘\‘t&’:‘f’:’oféﬁ"f%ﬁ

A\

F3) < F00+ V160 (y ) + Slx -yl oy € R

 (Gradient descent:

Goal: Find x € R? such that

f(x)— f(x") <e.
Note that there can be several minima x] # x5 with f(x7) = f(x3). g rad |ent fleld

Iterative Algorithm:
Xpy1 i= X — YV f (%),

for timesteps t = 0,1,..., and stepsize v > 0.
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........ level sets of f

—3 gradient update
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........ level sets of f

—3 gradient update
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* When the function is VERY high-dimensional, only stochastic
gradients are computable (see Elad’s talk)

» Adaptive gradient descent (ADAGRAD) or Nesterov acceleration is a
standard workhorse in large-scale optimization in (online) machine
learning

« Stochastic, batch, mini-batch gradient descent (with adaptive step
sizes), such as ADAM, is the standard optimizer for Deep NN
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» Adaptive gradient descent (ADAGRAD) or Nesterov acceleration is a
standard workhorse in large-scale optimization in (online) machine

learning

« Stochastic, batch, mini-batch gradient descent (with adaptive step
sizes), such as ADAM, is the standard optimizer for Deep NN

Journal of Machine Learning Research 12 (2011) 2121-2159

Submitted 3/10; Revised 3/11; Published 7/11

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization*

Diederik P. Kingma®
University of Amsterdam, OpenAl

Jimmy Lei Ba*
University of Toronto

John Duchi

Computer Science Division
University of California, Berkeley
Berkeley, CA 94720 USA

Elad Hazan

Technion - Israel Institute of Technology
Technion City

Haifa, 32000, Israel

Yoram Singer

Google

1600 Amphitheatre Parkway
Mountain View, CA 94043 USA

JDUCHI@CS.BERKELEY.EDU

EHAZAN@IE.TECHNION.AC.IL

SINGER @ GOOGLE.COM

dpkingma@openai.com Jjimmy@psi.utoronto.ca

ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with
very noisy and/or sparse gradients. The hyper-parameters have intuitive interpre-
tations and typically require little tuning. Some connections to related algorithms,
on which Adam was inspired, are discussed. We also analyze the theoretical con-
vergence properties of the algorithm and provide a regret bound on the conver-
gence rate that is comparable to the best known results under the online convex
optimization framework. Empirical results demonstrate that Adam works well in
practice and compares favorably to other stochastic optimization methods. Finally,
we discuss AdaMax, a variant of Adam based on the infinity norm.
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» Extension: Nonlinear conjugate gradient descent An Introduction to

the Conjugate Gradient Method
Without the Agonizing Pain

* Use consecutive gradient directions to generate Edition 11
better search directions (conjugate directions) o s tor

* Use line search along the new search directions

School of Computer Science

» Keywords: Fletcher-Reeves, Polak-Ribiere Camnegie Melon Univeriy

S p
——— gradient
—— conjugate gradient
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SECOND-ORDER OPTIMIZATION

* The gradient and the Hessian of the function t is
available, i.e. local curvature information

* The function is moderately high-dimensional

* The function is smooth with Lipschitz constant L
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SECOND-ORDER OPTIMIZATION

* The gradient and the Hesslan of the function f is
available, i.e. local curvature information

* The function is moderately high-dimensional

* The function is smooth with Lipschitz constant L

 (Gradient descent:

General update scheme:
xi41 = Xt — H(x¢)V f(x4),

where H(x) € R%*? is some matrix.
Newton's method: H = V2 f(x;)~!.
Gradient descent: H = ~I.

Newton's method: “adaptive gradient descent”, adaptation is w.r.t. the local geometry
of the function at x;.
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SECOND-ORDER OPTIMIZATION

* The gradient and the Hesslan of the function f is
available, i.e. local curvature information

* The function is moderately high-dimensional

* The function is smooth with Lipschitz constant L

 (Gradient descent: 0

General update scheme:
xi41 = Xt — H(x¢)V f(x4),

where H(x) € R%*? is some matrix.
Newton's method: H = V2 f(x;)~!.
Gradient descent: H = ~I.

Newton's method: “adaptive gradient descent”, adaptation is w.r.t. the local geometry
of the function at x;.




» Second-order very useful when the dimension is not too high;
otherwise storage of the Hessian becomes prohibitive (O(n2))

* When the function has many saddle-points, Newton’s method
needs to be modified

 Variable-metric methods provide an efficient alternative, e.g., BFGS
(Broyden, Fletcher, Goldfarb, Shanno) and L-BFGS

SIAM J. OPTIMIZATION © 1991 Society for Industrial and Applied Mathematics
Vol. 1, No. 1, pp. 1-17, February 1991 001

VARIABLE METRIC METHOD FOR MINIMIZATION*

WILLIAM C. DAVIDONY

Abstract. This is a method for determining numerically local minima of differentiable functions of
several variables. In the process of locating each minimum, a matrix which characterizes the behavior of
the function about the minimum is determined. For a region in which the function depends quadratically
on the variables, no more than N iterations are required, where N is the number of variables. By suitable
choice of starting values, and without modification of the procedure, linear constraints can be imposed
upon the variables.

Key words. variable metric algorithms, quasi-Newton, optimization

AMS(MOS) subject classifications. primary, 65K10; secondary, 49D37, 65K05, 90C30
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Complicated!

/

subject to 9i(x) <0, i=1,...,m
hj(IL‘)ZO, j=1,...,p

/

Solution of a (parameterized) partial differential equation!

minimize f(z)
Zr

* Arises in many optimal control problems

* Extremely costly is moderately high-dimensional

 Certain tricks allow efficient optimization
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Stochastic Methods for Single Objective Global Optimization, Christian L. Muller, in: Computational Intelligence in Aerospace

59

Sciences - Fundamental Concepts and Methods (2015) https://doi.org/10.2514/5.9781624102714.0063.0112
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WHAT ARE GOOD FUNCTIONS?

CONVEX FUNCTIONS!
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CONVEX FUNCTIONS!

“...In fact, the great watershed in optimization
ISn't between linearity and nonlinearity, but
convexity and nonconvexity.”

- R. Tyrrell Rockaftellar, in SIAM Review, 1993




“...In fact, the great watershed in optimization
Isn't between linearity and nonlinearity, but

convexity and nonconvexity.”
- R. Tyrrell Rockaftellar, in SIAM Review, 1993

“If it's not convex, it's not science”
- attributed to Emmanuel Candes, undated




CONVEX OPTIMIZATION N\ eI

A convex optimization problem is said to be in the standard form if it is written as

minimize f(x)
X

subject to 9;(x) <0, i=1,...,m
hi(X)=0, ’l:=].,...,p,

where z € R" is the optimization variable, the functions f, g1, ..., gn, are convex, and the functions hy, ..., h, are affine.
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CONVEX OPTIMIZATION
A convex optimization problem is said to be in the standard form if it is written as
minixmize f(x)
subject to 9;(x) <0, i=1,...,m
hi(x)=0, i=1,...,p,
where z € R" is the optimization variable, the functions f, g1, ..., gn, are convex, and the functions hy, ..., h, are affine.

Let X be a convex set in a real vector space and let f : X — R be a function.

e fis called convex if:
Vzy,xe € X,Vt € [0,1] : fltxy + (1 —t)ze) < tf(x1) + (1 —t) f(z2)

e fis called strictly convex if:
Vaq 7& xy € X,Vt € (O, 1) : f(tiUl + (1 — t):l:z) < tf((L'l) + (1 — t)f((l?z)
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CONVEX OPTIMIZATION

A convex optimization problem is said to be in the standard form if it is written as
minixmize f(x)
subject to 9;(x) <0, i=1,...,m
hi(x)=0, i=1,...,p,

where z € R" is the optimization variable, the functions f, g1, ..., g,, are convex, and the functions h, ..., h, are affine.

Let X be a convex set in a real vector space and let f : X — R be a function.

e fis called convex if:
Vzy,xe € X,Vt € [0,1] : ftxy + (1 —t)xe) < tf(xy) + (1 —t)f(z2)

e fis called strictly convex if:

YV, ;é xy € X,Vt € (0, 1) : f(ta:l + (1 — t)il?z) < tf((l:l) + (1 — t)f(ivz)

Convex set ) Convex function

f(x)
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CONVEX OPTIMIZATION N\ INSTITUT

A convex optimization problem is said to be in the standard form if it is written as
minixmize f(x)
subject to 9;(x) <0, i=1,...,m
hi(x)=0, i=1,...,p,
where z € R" is the optimization variable, the functions f, g1, ..., gn, are convex, and the functions hy, ..., h, are affine.

Let X be a convex set in a real vector space and let f : X — R be a function.

o fis called convex if:
v

e fis call . - - - .
YV, 76 xy € X,Vt € (0, 1) : f(t:cl + (1 — t)il?z) < tf((L'l) + (1 — t)f((l?z)
Convex set ) Convex function

f(x)
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CONVEX OPTIMIZATION WITH

CONVEX CONSTRAINTS

min f(x)

xEcR™
st. Ax<b. .
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CONVEX OPTIMIZATION WITH

CONVEX CONSTRAINTS

min f(x)

xER™
s.t. Ax<b. .

s.t. xTAx<1.
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CONVEX CONSTRAINTS

min X

e S0 N
s.t. Ax<Db. .
s.t. xTAx<1. ‘
s.t. Ag+zx21A{+...+x,A,, X0. ’

o2



PRINCETON LANOMARKS
IN MATHEMATICS
Stephen Boyd and

Lieven Vandenberghe

convex
Optimization

Lonvex
Analysis
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GFP

« Each category has a standard form and
associated generic solvers

* Many engineering problems can be
formulated as one of these problems and
efficiently solved with theoretical guarantees

« Convergence guarantees and rates can be
proven under certain conditions

* Interior-point methods as fundamental LP: linear program
breakthrouah QP: quadratic program
J SOCP second-order cone program

SDP: semidefinite program
CP: cone program
GFP: graph form program
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THE HIERARCHY OF CONVEX
PROGRAMS

GFP

« Each category has a standard form and
associated generic solvers

* Many engineering problems can be
formulated as one of these problems and
efficiently solved with theoretical guarantees

« Convergence guarantees and rates can be
proven under certain conditions

« Interior-point methods as fundamental LP: linear program
breakthrouah QP: quadratic program
g SOCP second-order cone program
o SDP: semidefinite program
OO o Sptem 1 200 CP: cone program

GFP: graph form program

THE INTERIOR-POINT REVOLUTION IN OPTIMIZATION:
HISTORY, RECENT DEVELOPMENTS,
AND LASTING CONSEQUENCES

MARGARET H. WRIGHT



PROPERTIES OF CONVEX N\ INSTITUTE

FUNCTIONS AND OPTIMIZATION

» Choice, run time, and applicability of different methods depend on
the specific properties of the convex functions and the constraints

« Keywords: Strongly convex, smooth, non-smooth, constrained,
unconstrained, ...

« Optimal convergence rates (in function value and iterates) can be
proven for many algorithms for specific classes of convex function
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WHY BECAME CONVEX
OPTIMIZATION SO POPULAR?




WHY BECAME CONVEX N\ INSTITUTE
OPTIMIZATION SO POPULAR?

Many classical machine learning and statistics problems are
convex! Consider sparse regression/compressed sensing!
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WHY BECAME CONVEX N\ INSTITUTE
OPTIMIZATION SO POPULAR?

Many classical machine learning and statistics problems are
convex! Consider sparse regression/compressed sensing!

Outcome Predictors

! IR
OOO 2000 3000 4000

P

An often encountered scenario is that there are more
variables than measurements, I.e., p>>n
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J. R. Statist. Soc. B (1996)
58, No. 1, pp.267-288

q- FLATIRON

Regression Shrinkage and Selection via the Lasso
By ROBERT TIBSHIRANI}
University of Toronto, Canada

[Received January 1994. Revised January 1995]
R — R

min {||Y — XB|5 (-
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Regression Shrinkage and Selection via the Lasso
By ROBERT TIBSHIRANI}
University of Toronto, Canada

[Received January 1994. Revised January 1995]
R — B

min | || Y — Xb||5 + A|| B¢ -
,BEQ{/«

7

Likelihood term




SPARSE REGRESSION N\ NSTiTOTE

J. R. Statist. Soc. B (1996)
58, No. 1, pp.267-288

Regression Shrinkage and Selection via the Lasso
By ROBERT TIBSHIRANI}
University of Toronto, Canada

[Received January 1994. Revised January 1995]
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’ /
Likelihood term Sparsity
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SPARSE REGRESSION

R. Statist. Soc. B (1996)
1, pp. 267-288

Regression Shrinkage and Selection via the Lasso

By ROBERT TIBSHIRANI}
University of Toronto, Canada

[Received January 1994. Revised January 1995]
R — I

tuning parameter

min | | Y — Xpb||5 + 4 -

/
Likelihood term Sparsity
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PROXIMAL ALGORITHMS FOR N s
NON-SMOOTH CONVEX OPTIMIZATION

* Many high-dimensional statistics problems are non-smooth
convex problems (e.g., Lasso, structured sparsity, ...)

* Proximity operator as fundamental building block

e Efficient schemes and exact convergence guarantees

Foundations and Trends® in Optimization

Vol. 1, No. 3 (2013) 123-231 n.w
2013 N. Parikh and S. Boyd
XXX the essence of knowledge

Chapter 10
Proximal Splitting Methods in Signal Processing

Patrick L. Combettes and Jean-Christophe Pesquet Proximal Algorithms

Neal Parikh
Department of Co mp uter Sci
Stanford University
npparikh@cs.stanford.edu

Stephen Boyd
Department of Electrical Engineering
Stanford University

boyd@stanford.edu
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OPTIMIZATION FOR MACHINE LEARNKNGII.

Up until about 2010, (proximal) gradient descent the way to go...

Since then many developments... e e St e
Convex Optimization
for Big Data

Scalable, randomized, and parallel algorithms

for big data analytics



Up until about 2010, (proximal) gradient descent the way to go...

S | nce th en ma ny d ave | ') p me nts o | Volkan Cevher, Stephen Becker, and Mark Schmidt
Convex Optimization
for Big Data

« Function is high-dimensional but convex

« Adaptive gradient descent (ADAGRAD) or
Nesterov acceleration became popular

« Stochastic gradient descent increasingly

_ Signal Processing

used

« Distributed optimization as novel paradigm

Scalable, randomized, and parallel algorithms

for big data analytics
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STOCHASTIC GRADIENT DESCENT s [NsTirute
(SGD)

A STOCHASTIC APPROXIMATION METHOD®

By HerBERT RoBBINS AND SuTToN MONRO
Unwersity of North Carolina

1. Summary. Let M (x) denote the expected value at level z of the response
to a certain experiment. M (z) is assumed to be a monotone function of z but is
unknown to the experimenter, and it is desired to find the solution z = 8 of the
equation M (x) = a, where « is a given constant. We give a method for making
successive experiments at levels x; , z, , - - - in such a way that z, will tend to 6 in
probability.

cited ~6600 times since 1951
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WHY SGD?

Many objective functions are sum structured:

FO) = 3 filx).

Example: f; is the cost function of the i-th observation, taken from a training set of n
observation.

Evaluating V f(x) of a sum-structured function is expensive (sum of n gradients).
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SGD - THE ALGORITHM

choose xy € R,

sample ¢ € [n| uniformly at random

Xt+1 = Xt — %sz'(Xt)-

for times t = 0,1,..., and stepsizes ; > 0.
Only update with the gradient of f; instead of the full gradient!
lteration is n times cheaper than in full gradient descent.

The vector g; := V f;(x¢) is called a stochastic gradient.

g; is a vector of d random variables, but we will also simply call this a random variable.
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SGD - MINI-BATCH VARIANT

Instead of using a single element f;, use an average of several of them:
m
DI
m &= ="
J=1

Extreme cases:
m = 1 < SGD as originally defined
m = n < full gradient descent

Benefit: Gradient computation can be naively parallelized
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ADAM

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma® Jimmy Lei Ba*
University of Amsterdam, OpenAl University of Toronto
dpkingma@openai.com Jjimmy@psi.utoronto.ca
ABSTRACT

We introduce Adam, an algorithm for first-order gradient-based optimization of
stochastic objective functions, based on adaptive estimates of lower-order mo-
ments. The method is straightforward to implement, is computationally efficient,
has little memory requirements, is invariant to diagonal rescaling of the gradients,
and is well suited for problems that are large in terms of data and/or parameters.
The method is also appropriate for non-stationary objectives and problems with
very noisy and/or sparse gradients. The hyper-parameters have intuitive interpre-
tations and typically require little tuning. Some connections to related algorithms,
on which Adam was inspired, are discussed. We also analyze the theoretical con-
vergence properties of the algorithm and provide a regret bound on the conver-
gence rate that is comparable to the best known results under the online convex
optimization framework. Empirical results demonstrate that Adam works well in
practice and compares favorably to other stochastic optimization methods. Finally,
we discuss AdaMax, a variant of Adam based on the infinity norm.

cited ~32400 times since 2014
eeeeee——— e



Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; ® g:. Good default settings for the tested machine learning problems are ¢ = 0.001,
B1 = 0.9, B2 = 0.999 and ¢ = 10~%. All operations on vectors are element-wise. With 3% and 3}
we denote 37 and 3> to the power t.

Require: «: Stepsize
Require: (1,32 € [0, 1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 6g: Initial parameter vector
mo < 0 (Initialize 1%' moment vector)
vo +— 0 (Initialize 2™ moment vector)
t <— 0 (Initialize timestep)
while 6; not converged do
t<—t+1
gt < Vo fi(0:_1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-me—1 + (1 — B1) - g: (Update biased first moment estimate)
vy < Bo v + (1 — Ba) - gt2 (Update biased second raw moment estimate)
my < my/(1 — %) (Compute bias-corrected first moment estimate)
vy < v /(1 — B5) (Compute bias-corrected second raw moment estimate)
0; + 0,_1 — - my/(v/0; + €) (Update parameters)
end while
return 6; (Resulting parameters)
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MNIST Multilayer Neural Networks

=
o
-

. : : : — SFO
10" MNIST Multilayer Neural Network + dropout N adem]]
| | — AdaGrad 1
10
RMSProp
SGDNesterov g 107
AdaDelta £
Adam )
; 10"
10°
+—
3 " ‘ ‘ ‘ ‘
O 107 5 10 15 20 25
o iterations over entire dataset
c
§ Ak v"\, )
© * 10 MNIST MuItlI‘ayer Neural Netwqus
S : ‘ — SFO
102 b e WA W 10 e T Adam],
. . 10_1
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i i i
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normalized walltime

(a) (b)

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)
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DEEP LEARNING LIBRARIES

TORCH.OPTIM

torch.optim is a package implementing various optimization algorithms. Most commonly used methods are already
supported, and the interface is general enough, so that more sophisticated ones can be also easily integrated in the
future.

How to use an optimizer

To use torch.optim you have to construct an optimizer object, that will hold the current state and will update the
parameters based on the computed gradients.

Constructing it

To construct an Optimizer you have to give it an iterable containing the parameters (all should be variable s) to
optimize. Then, you can specify optimizer-specific options such as the learning rate, weight decay, etc.

e NOTE

If you need to move a model to GPU via .cuda() , please do so before constructing optimizers for it.
Parameters of a model after .cuda() will be different objects with those before the call.

In general, you should make sure that optimized parameters live in consistent locations when optimizers are
constructed and used.

Example:

optimizer = optim.SGD(model.parameters(), 1lr=0.01, momentum=0.9)
optimizer = optim.Adam([varl, var2], lr=0.0001)
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DEEP LEARNING LIBRARIES

Example:

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = optim.Adam([varl, var2], lr=0.0001)
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IN KERAS

Usage of optimizers

An optimizer is one of the two arguments required for compiling a Keras model:

from keras import optimizers

model = Sequential()

model.add(Dense(64, kernel_initializer='uniform', input_shape=(1@,)))
model.add(Activation('softmax'))

sgd = optimizers.SGD{1r=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='mean_squared_error', optimizer=sqd)

You can either instantiate an optimizer before passing it to model.compile() , as in the above
example, or you can call it by its name. In the latter case, the default parameters for the optimizer

will be used.

# pass optimizer by name: default parameters will be used
model.compile(loss='mean_squared_error', optimizer='sgd')
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A RELATIVELY RECENT REVIEW

Optimization Methods for Large-Scale Machine Learning

Léon Bottou* Frank E. Curtis! Jorge Nocedalt

February 12, 2018

Abstract

This paper provides a review and commentary on the past, present, and future of numerical
optimization algorithms in the context of machine learning applications. Through case studies
on text classification and the training of deep neural networks, we discuss how optimization
problems arise in machine learning and what makes them challenging. A major theme of our
study is that large-scale machine learning represents a distinctive setting in which the stochastic
gradient (SG) method has traditionally played a central role while conventional gradient-based
nonlinear optimization techniques typically falter. Based on this viewpoint, we present a com-
prehensive theory of a straightforward, yet versatile SG algorithm, discuss its practical behavior,
and highlight opportunities for designing algorithms with improved performance. This leads to
a discussion about the next generation of optimization methods for large-scale machine learning,
including an investigation of two main streams of research on techniques that diminish noise in
the stochastic directions and methods that make use of second-order derivative approximations.
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OPTIMIZATION SOFTWARE

( Software for Disciplined Convex Programming |

m=20; n=10; p = 4;

minimize "Ax — b"2 A = randn(m,n); b = randn(m,1);

C = randn(p,n); d = randn(p,1l); e = rand;
. cvx_begin
subjectto Cx =d varizble x(m
minimize( norm( A * x - b, 2 ) )
||x||°° S (4 subject to
C*x==4d
norm( x, Inf ) <= e
cvx_end
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4 NLopt Documentation

Home Downloads Documentation Resources v Products v Sales v Support About us v Docs » NLopt algorithms » NLopt algorithms © Edit on GitHub

NLopt Algorithms

Overview

MOSEK solves all your LPs, QPs, SOCPs, SDPs and MIPs. Includes interfaces to C, C++,
Java, MATLAB, .NET, Python and R.
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Abstract

There are many surprising and perhaps counter-intuitive properties of optimization
of deep neural networks. We propose and experimentally verify a unified phe-
nomenological model of the loss landscape that incorporates many of them. High
dimensionality plays a key role in our model. Our core idea is to model the loss
landscape as a set of high dimensional wedges that together form a large-scale,
inter-connected structure and towards which optimization is drawn. We first show
that hyperparameter choices such as learning rate, network width and Lo regular-
ization, affect the path optimizer takes through the landscape in a similar ways,
influencing the large scale curvature of the regions the optimizer explores. Finally,
we predict and demonstrate new counter-intuitive properties of the loss-landscape.
We show an existence of low loss subspaces connecting a set (not only a pair)
of solutions, and verify it experimentally. Finally, we analyze recently popular
ensembling techniques for deep networks in the light of our model.
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Abstract

Neural network training relies on our ability to find “good” minimizers of highly
non-convex loss functions. It is well-known that certain network architecture
designs (e.g., skip connections) produce loss functions that train easier, and well-
chosen training parameters (batch size, learning rate, optimizer) produce minimiz-
ers that generalize better. However, the reasons for these differences, and their
effect on the underlying loss landscape, are not well understood. In this paper, we
explore the structure of neural loss functions, and the effect of loss landscapes on
generalization, using a range of visualization methods. First, we introduce a simple
“filter normalization” method that helps us visualize loss function curvature and
make meaningful side-by-side comparisons between loss functions. Then, using
a variety of visualizations, we explore how network architecture affects the loss
landscape, and how training parameters affect the shape of minimizers.
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(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.
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