Determining the initial conditions and transport properties of quark-gluon plasma by flow measurements at the LHC

Jasper Parkkila, Dong Jo Kim

NUCLEUS – 2020 12. October 2020

Anisotropic Flow

Introduction

Current understanding of the medium properties

- ALICE data on multiplicity, spectra and flow are key inputs to estimate the properties of the QGP (including p-Pb data), i.e Global Bayesian Analysis and other theory groups.
- η/s(T) and ζ/s(T) should be constrained further (larger uncertainties) by separating the effects from the initial conditions.

¹D. T. Son et. al. Phys. Rev. Lett. 94 (2005) 111601

Model summary and parameterizations

Model	Hydrodynamic code	Initial conditions	η/s	ζ/s
EKRT+param0	EbyE	EKRT	0.20	0
EKRT+param1	EbyE	EKRT	$\eta/s(T)$	0
$AMPT^1+param2$	iEBE-VISHNU	AMPT	0.08	0
T _R ENTo+param3	iEBE-VISHNU	$T_{R}ENTo(p=0)$	$\eta/s(T)$	$\zeta/s(T)$
IP-Glasma+param4	MUSIC	IP-Glasma	0.095	$\zeta/s(T)$

• State of the art models compared to latest measurements

• Many models calibrated to reproduce lower order harmonic observables

Introduction

Non-linearity of the higher order flow, $\varepsilon_n \propto v_n$ holds only for n = 2,3

Jasper Parkkila, Dong Jo Kim

Flow modes in Pb-Pb

Introduction

Non-linearity of the higher order flow and cross-harmonic decomposition

The magnitude of the non-linear contribution and non-linear flow mode coefficients:

$$\begin{aligned} \mathbf{v}_{4,22} &= \frac{\Re \langle V_4 (V_2^*)^2 \rangle}{\sqrt{\langle |V_2|^4 \rangle}} \\ &\approx \langle \mathbf{v}_4 \cos(4\psi_4 - 4\psi_2) \rangle, \qquad (4) \\ \chi_{4,22} &= \frac{\mathbf{v}_{4,22}}{\sqrt{\langle \mathbf{v}_2^4 \rangle}}. \end{aligned}$$

Linear part is extracted from the total and non-linear contributions:

$$\underbrace{\langle |V_{4L}|^2 \rangle^{\frac{1}{2}}}_{v_{4L}} = (\underbrace{\langle |V_4|^2 \rangle}_{v_4^2} - \underbrace{\chi^2_{4,22} \langle |V_2|^4 \rangle}_{v_{4,NL}^2})^{\frac{1}{2}}.$$
 (5)

Anisotropic flow in heavy-ion collisions

- Hydrodynamic calculations agree well with the data up to v₃.
- AMPT ($\eta/s = 0.08$) describes the data best in mid-peripheral collisions, but fails to describe the central collisions for n = 4, 5
- IP-Glasma, TRENTo: good description for n = 2, 3, overestimations at $n \ge 4$
- EKRT $(\eta/s = 0.20)$: best agreement among all model configurations at $n \ge 4$
- **EKRT** $(\eta/s(T))$: comparable up to mid-central collisions, but overestimate the data for peripheral collisions for n = 4, 5
- As *n* increases, the sensitivity to model parameterizations gets larger

Jasper Parkkila, Dong Jo Kim

Flow power spectrum

- Power spectra is measured up to v₉ in various centrality bins.
- Clear decrease in magnitude $v_n \propto e^{-k'n^2}$ (viscous damping¹) is observed as *n* increases
 - Clear damping also observed in hydrodynamical calculations
 - Slope of the calculations is dependent on the model parameterizations
- Interesting feature predicted in acoustic model² for $n \ge 7$ can be further investigated with 2018 data

¹E. Shuryak, PRC84,044912 (2011), R. Lacey et. al. arXiv:1301.0165 ²E. Shuryak, PRC84,044912 (2011), Universe 3 (2017) no.4, 75

Damping depends on $p_{\rm T}$

- Both functions work well for $3 \le n \le 5$. Note that p_T ranges are different.
 - 1 0.2 < $p_{\rm T}$ < 5.0 GeV/c
 - 2) $0.5 < p_{\rm T} < 60.0 \, {
 m GeV}/c$
- $e^{-k'n^2}$ works better for n > 5
- For n > 7, clear deviation from both fits.

Jasper Parkkila, Dong Jo Kim

Linear and non-linear decomposition up to $7^{\rm th}$ order

- Linear component dominant in central collisions
- Non-linear component increasingly dominant in mid-central to peripheral collisions
- Strength of the non-linear flow mode depends on the harmonic order.

Measured quantities v_n and $v_{n,m}$, from which the linear component is derived.

Non-linear flow mode cofficients, hydrodynamic predictions

- Clear centrality dependence for all harmonics
- Non-linear response at high harmonics larger
- Large disagreements between the data and the models for $\chi_{5,23}$.
- Model parameterizations need further tuning to capture the magnitude and the centrality dependence.

Toward measurement of ultra-high harmonics

- Damped input according to $v_n \propto e^{-k' \, n^2}$, $n \geq 7$
- ϕ -gap modulation
- Measured multiplicity
- Plausibility of ultra-high harmonic results. Reconstruction to be verified with ToyMC simulations.
- 35M event ToyMC closure test, converged up to v_{11}
- n > 11 needs further investigation

Summary

General:

- The flow coefficients, flow modes and non-linear flow mode coefficients of the charged hadrons are measured up to the 9th and 7th harmonic, respectively.
- Cross harmonic decomposition: higher order harmonic non-linear flow mode is more sensitive η/s , ζ/s parameterizations.
- Better constraints on initial conditions and $\eta/s(T)$, $\zeta/s(T)$ with improved precision and extended harmonic orders.

Hydrodynamic models:

- Good agreement for low order harmonic v_n . However, higher orders are not well reproduced.
- Set for the future Bayesian analysis

Our data can help to further constrain η/s and ζ/s in model calculations.

Related:

- E-b-E two or three harmonic flow magnitude correlations [A. Bilandzic, today]
- What can we learn from small systems? [Y. Zhou, today]

Thank you!

Backup

Symmetry-plane correlations, hydrodynamic predictions

- Clear centrality dependence for all harmonics
- Good agreement between the data and the models