

QCD studies at BESIII

Dong LIU (on behalf of BESIII Collaboration) State key laboratory of particle detection and electronics University of Science and Technology of China

NUCLEUS – 2020 (online) 11th to 17th October 2020

Outline

- The BESIII experiment
- Baryon structure, form factor measurement

NUCLEUS2020: QCD at BESIII

- $\phi(2170)$ related studies
- Precision test on a_{μ}
- Summary

The BESIII experiment

BESIII detector

BEPC -> BEPCII 2009-Now: Physics run \sqrt{s} : 2.0 - 4.6 GeV(4.9 GeV) Optimized \sqrt{s} : 3.77 GeV Peak Lum: 1 x 10³³ /cm²/s Cross Angle: 22 mrad \sqrt{s} spread: $\sigma = 0.8$ MeV @J/ ψ

LINAC

Data sets

- Baryons are non-point like particles
 - Quarks, gluons
- Structure of baryons
 - Electromagnetic form factors
 - Parton distribution functions
 - Generalized parton distributions
 - Other functions
- Space-like (scattering) and time-like (annihilation) experiments
- Electromagnetic form factors
 - FF characterize the internal structure and dynamics of baryons
 - For a particle spin S, 2S+1 FFs are required

- Spin 1/2 baryons
 - Vertex Γ_{μ}

$$\Gamma_{\mu} = \gamma_{\mu} F_1^B(q^2) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2M} F_2^B(q^2)$$

- Dirac FF: $F_1^B(q^2)$; Pauli FF: $F_2^B(q^2)$
- Relation of EM FF with Sachs FF

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m^2} \kappa F_2(q^2)$$
$$G_M(q^2) = F_1(q^2) + \kappa F_2(q^2)$$

- $G_E \& G_M$: related to the spatial distributions of charge and magnetization of baryon
- Cross section

$$\sigma_{BB}(q^2) = \frac{4\pi\alpha^2 C\beta}{3q^2} \left[|G_M(q^2)|^2 + \frac{2m^2}{q^2} |G_E(q^2)|^2 \right]$$

• C: Coulomb factor, $\frac{\pi\alpha}{\beta} \frac{1}{1 - \exp(-\frac{\pi\alpha}{\beta})}$ for B[±], **1** for B⁰.

NUCLEUS2020: QCD at BESIII

Direct Scan Method:

Nucleon

 $-e^+e^- \rightarrow p\bar{p}$ (ISR method) [<u>PRD 99, 092002(2019)</u>]

- Combined data sets between 3.773 and 4.6 GeV: 7.5 fb⁻¹
- ISR technique, untagged analysis (ISR photon not detected)
- Precision on $|G_{eff}|$: 4.1 28.7%

$$G_{eff} \Big| = \sqrt{\frac{\sigma_{p\bar{p}}}{\frac{4\pi\alpha^2\beta C}{3s} \left(1 + \frac{2m^2}{s}\right)}}$$

• $R=|G_E/G_M|$ measured in three q² intervals, consistent with Babar's result

- Nucleon
 - $e^+e^- \rightarrow p\bar{p}$ (scan method) [PRL 124, 042001(2020)]
 - Precise measurement of cross section $e^+e^- \rightarrow p\bar{p}$ at 22 points from 2.0 3.08 GeV
 - Effective form factor (EFF) is extracted with uncertainty ~ 1.7-11.8%
 - Oscillating structures observed in the EFF minus modified dipole parameterization
 - Rescattering process in the final state? [PRL 114, 232301 (2015)]
 - Independent resonant structure?

- Nucleon
 - $e^+e^- \rightarrow p\bar{p}$ (scan method) [PRL 124, 042001(2020)]
 - Precise measurement of cross section $e^+e^- \rightarrow p\bar{p}$ at 22 points from 2.0 3.08 GeV
 - Effective form factor (EFF) is extracted with uncertainty ~ 1.7-11.8%
 - $|G_E/G_M|$, $|G_M|$ are determined with high accuracy, with uncertainty comparable to data in space-like experiments
 - $|G_E|$ is measured for the first time in time-like region

- Nucleon
 - $-e^+e^- \rightarrow n\overline{n}$ (scan method)
 - The Born cross sections are determined in a wide rage with unprecedented precision, ~10%, (best at 2.396 GeV with 7.3% uncertainty)
 - Agree with FENICE and SND at 2.0 GeV
 - Differ by 2σ with FENICE at 2.396 GeV.
 - $R=|G_E/G_M|$ have been determined for the first time in time-like region

- Hyperon
 - $e^+ e^- \rightarrow \Lambda \overline{\Lambda} [\underline{\mathsf{PRD 97, 032013(2018)}}]$
 - Near threshold production and small PHSP in $\Lambda/\overline{\Lambda}$ decays
 - Anomalous behavior differing from the pQCD prediction at threshold is observed
 - Complete Λ form factor [<u>PRL123</u>, <u>122003(2019)</u>] (@2.396GeV)
 - Formula

$$egin{aligned} \mathcal{W}(m{\xi}) =& \mathcal{T}_0(m{\xi}) + \eta \mathcal{T}_5(m{\xi}) \ &- lpha_{\Lambda}^2 \left(\mathcal{T}_1(m{\xi}) + \sqrt{1 - \eta^2} \cos(\Delta \Phi) \mathcal{T}_2(m{\xi}) + \eta \mathcal{T}_6(m{\xi}) \ &+ lpha_{\Lambda} \sqrt{1 - \eta^2} \sin(\Delta \Phi) \left(\mathcal{T}_3(m{\xi}) - \mathcal{T}_4(m{\xi})
ight). \end{aligned}$$

$$R = |G_E/G_M|, \Delta \Phi = \Phi_E - \Phi_M, \eta = rac{ au - R^2}{ au + R^2}$$

NUCLEUS2020: QCD at BESIII

Hyperon

$-e^+e^- \rightarrow \Sigma^+\overline{\Sigma}^-$ and $\Sigma^-\overline{\Sigma}^+$ [arxiv: 2009.01404]

- Nonzero cross section near threshold
- The lineshape is well described by pQCD motivated model
- $\sigma(e^+e^- \rightarrow \Sigma^+ \overline{\Sigma}^-) / \sigma(e^+e^- \rightarrow \Sigma^- \overline{\Sigma}^+)$: 9.7±1.3, which is inconsistent with prediction from various models
- |G_E/G_M| of Σ⁺ is significantly higher than 1 near threshold, and consisten¹ with 1 at higher c.m. energies.

Energy (GeV)	G _E /G _M
2.3960	$1.83 \pm 0.26 \pm 0.24$
2.6454	$0.66 \pm 0.15 \pm 0.11$
2.9000	$1.06 \pm 0.36 \pm 0.09$

• $|G_E/G_M|$ of Σ^- : data not enough

- Charmed baryon
 - $e^+ e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^- [\underline{\mathsf{PRL120, 132001(2018)}}]$
 - Ten decay modes of Λ_c^+ are reconstructed
 - Measurement of Born cross section at 4 energies below 4.6 GeV with unprecedented statistical accuracy (~1.3% at 4.6 GeV)
 - Threshold enhancement is observed
 - Data has been taken above 4.6 GeV

Baryons

- $p\bar{p}, n\bar{n}, \Lambda\bar{\Lambda}, \Sigma^+\bar{\Sigma}^-, \Sigma^-\bar{\Sigma}^+, \Lambda_c^+\bar{\Lambda}_c^-$ are studied with good accuracy
- Threshold enhancements
- Oscillation in effective form factor of nucleons

Strange quarkonium

- Compared with $c\bar{c}$ and $b\bar{b}$, $s\bar{s}$ is a terra incognita
- XYZ particles with strange quark as well?
- A bridge between light and heavy quark

The nature of φ(2170) is unclear

Nature of $\phi(2170)$ $s\bar{s}g$ hybrid, $2^{3}D_{1}$ or $3^{3}S_{1}$ $s\bar{s}$, tetraquark, molecular state $\Lambda\bar{\Lambda}$, three body ϕ KK

NUCLEUS2020: QCD at BESIII

φ(2170) related studies

- $e^+e^- \to K^+K^-$ [PRD99, 032001(2019)]
- $e^+e^- \to \phi \eta' [PRD102, 012008(2020)]$

 \rightarrow K⁺K⁻ π^0 π^0) (nb)

σ(e⁺e¯

1[(a)

0.8

0.6

0.4

0.2

0

1.5

2

2.5

3

√s (GeV)

• $e^+e^- \to K^+K^-\pi^0\pi^0$ [PRL124, 112001(2020)]

BaBar

BESIII

 $K^+K^-\pi^0\pi^0$

3.5

4

Process	Mass(MeV/c ²)	Width(MeV)
$e^+e^- \rightarrow K^+K^-$	2239.2±7.1±11.3	$139.8 \pm 12.3 \pm 20.6$
$e^+e^- ightarrow \phi \eta'$	2177.5±4.8±19.5	$149.0 \pm 15.6 \pm 8.9$
$e^+e^- \rightarrow K^+K^-\pi^0\pi^0$	$2126.5 \pm 16.8 \pm 12.4$	$106.9 \pm 32.1 \pm 28.1$

0.4

0.3

0.2

0.1

0

′1.5

0.15

0.05

0.25

0.35

(b)

BaBar

+ BESIII

3

3.5

 $h\pi^0\pi^0$

2.5

√s (GeV)

NUCLEUS2020: QCD at BESIII

2

 $\phi \pi^0 \pi^0$) (nb)

σ(e⁺e⁻

φ(2170) related studies

- φ(2170) in multi channels
 - Results vary in channels
 - Nature of the $\phi(2170)$ state is worth of discussion

Precision tests of SM

- BESTI BESTI
- $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-$ [arxiv: 2009.05011][PLB 753 (2016) 629]
 - Data: 2.9 fb⁻¹ @3.773 GeV
 - ISR method with neutral network technique
 - uncertainty of σ at 1% level
 - Contribution to the hadronic contribution of a_{μ}
 - $a_{\mu}^{\pi\pi,LO}(0.6 0.9 \text{ GeV}) = \frac{1}{4\pi^3} \int_{0.6}^{0.9} ds K(s) \sigma_{\pi\pi}^{bare}, \sigma_{\pi\pi(\gamma_{FSR})}^{bare} = \frac{N_{\pi\pi\gamma}(1 + \delta_{FSR}^{\pi\pi})}{L\varepsilon H(s)\delta_{vac}}$

• Confirmed the more than 3σ deviation with SM prediction

Precision tests of SM

• $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-\pi^0$ [arxiv:1912.11208]

Data: 2.9 fb⁻¹ @3.773 GeV, ISR method

- $a_{\mu}^{3\pi}(0.7 - 3.0 \text{ GeV})$ determined to be (49.77 \pm 0.53 \pm 0.17) x 10⁻¹⁰

Precision tests of SM

- $\gamma\gamma \to \pi^0$
 - $a_{\mu}^{Hadr,LBL}$ is not directly related to measurable quantities
 - Transition form factors (TFF) as experimental input
 - Single tag measurement (tag one scattered lepton)
 - First measurement below 0.5 GeV²
 - Unprecedented accuracy below 1.5 GeV²
 - Competitive accuracy up to 3.1 GeV²

Summary

- Fruitful results from e+ e- annihilation at BESIII, both energy scan and ISR methods are performed.
- More precise baryon form factor on proton, neutron, Λ , Σ^{\pm} and Λ_{c}^{+}
 - Threshold enhancement effect
 - Electromagnetic form factors are measured
 - Oscillation of the effective form factor of nucleons.
- Several exclusive channels are analyzed to study the property of φ(2170). Resonant structures are observed.
- ISR method is used to study $\pi^+\pi^-$, $\pi^+\pi^-\pi^0$ and $\pi^+\pi^-\pi^0\pi^0$ to study the anomalous μ magnetic moment.

Thank you!

NUCLEUS2020: QCD at BESIII

π transition form factor is measured via two-photon process.

backup

φ(2170) related studies

 $e^+e^- \rightarrow \phi K^+K^-$ and $K^+K^-K^+K^-[PRD100, 032009(2019)]$

220 È

BESIII

2.6

√s (GeV)

2.8

3

- Born cross sections are measured with improved precision
- A jump at 2.232 GeV is observed, but very narrow
 - Three body system $\phi K^+ K^-$?
 - $\Lambda\overline{\Lambda}$ threshold effect?
 - Other explanations?

A resonance at 2.2 GeV with significance more than 5σ

