

SHORT-RANGE NN CORRELATIONS AND QUASI-DEUTERON CLUSTERS IN THE REACTION

$$^{12}\text{C} + \text{p} \rightarrow ^{10}\text{A} + \text{pp} + \text{N}$$

Saturday 17 October 2020 12:35 (25 minutes)

Short range correlated (SRC) NN pairs play an important role in structure of atomic nuclei and are studied in many nuclear centers using electron beams [1]. A new step was done at BM@N in JINR [2] where the reaction $^{12}\text{C} + \text{p} \rightarrow ^{10}\text{A} + \text{pp} + \text{N}$ is studied using the ^{12}C beam at energy of 4 GeV/nucleon at kinematics providing interaction of the hydrogen target with the SRC pair in the ^{12}C . For theoretical analysis of the SRC effects in the reaction $^{12}\text{C} + \text{p} \rightarrow ^{10}\text{A} + \text{pp} + \text{N}$ it seems natural to use a properly modified approach [3] developed earlier (see Ref. [4] and references therein) to describe the quasi-elastic knock-out of fast deuterons from the light nuclei ^{12}C and $^{7,6}\text{Li}$ by protons in the reactions (p,pd) and (p,nd) [5]. An elementary sub-process in the (p,Nd) was the backward elastic scattering of the proton on the two-nucleon clusters $\text{p}\{\text{pn}\} \rightarrow \text{pd}$ and $\text{p}\{\text{nn}\} \rightarrow \text{nd}$ at the proton beam energy 670 MeV. Spectroscopic amplitudes for NN-pairs in the ground state of the ^{12}C nucleus are calculated here within the translation-invariant shell model (TISM) with mixing configurations. The factorization of the two-nucleon momentum distribution over the internal $n_{\text{rel}}(q_{\text{rel}})$ and the c.m.s. $n_{\text{cm}}(k_{\text{c.m.}})$ momenta is assumed and at large q_{rel} the squared deuteron (or singlet deuteron) wave function is used for $n_{\text{rel}}(q_{\text{rel}})$. Relativistic effects in the sub-process $\text{p} + \{\text{NN}\} \otimes \text{p} + \text{N} + \text{N}$ are taken into account in the light-front dynamics [3]. We found [6] that the c.m. distribution of the deuteron clusters obtained within the TISM and used in [3], [4] to describe the (p,Nd) data [4] has to be modified considerably to describe the $k_{\text{c.m.}}$ distribution of the SCR NN pairs measured in the electron data [1]. The ratio of the spin-singlet to spin-triplet $\{\text{NN}\}_s$ pairs is calculated.

This work is supported in part by the RFBR grant № 18-02-40046.

1. E.O.Cohen et al., Phys. Rev. Lett. 121 (2018) 092501.
2. SRC@BMN proposal: <http://bmnshift.jinr.ru/wiki/doku.php>
3. Yu.N.Uzikov, Izv.RAN, Ser. Fiz. 84 (2020) 580.
4. M.A.Zhusupov, Yu.N.Uzikov, Fiz. El. Chast. At. Yadr. 18 (1987) 323.
5. J.Ero" et al., Nucl. Phys. A 372(1981) 317; D.Albrecht et al., Nucl.Phys. A 322 (1979) 512.
6. Yu.N.Uzikov, EPJ Web Conf., 222 (2019) 03027.

Author: UZIKOV, Yuriy (JINR, M.V. Lomonosov Moscow State University, Dubna State University)

Presenter: UZIKOV, Yuriy (JINR, M.V. Lomonosov Moscow State University, Dubna State University)

Session Classification: Section 4. Relativistic nuclear physics, elementary particle physics and high-energy physics

Track Classification: Section 4. Relativistic nuclear physics, elementary particle physics and high-energy physics.