

Measurements of heavy-flavour hadron production with ALICE at the LHC

Cristiane Jahnke for the ALICE Collaboration Universidade de São Paulo

HEPIC Collision systems

Pb-Pb collisions:

- In-medium energy loss
- Colour-charge and quark-mass dependence
- Thermalisation of heavy-quarks in the medium
- Quarkonium dissociation and/or regeneration 0

- p-Pb collisions:
 - Cold nuclear matter effects can be studied:
 - Nuclear modification of parton densities
 - Collinear PDFs or saturation description
 - Propagation in nucleus and in medium
 - Secondary quarkonium interaction
- pp collisions:
 - Reference for studies with p-Pb collisions and Pb-Pb collisions
 - Test of QCD calculations

- pp and p-Pb collisions:
 - Look for possible collective behaviour in small systems

Why to study heavy quarks?

- Heavy-flavour particles contain charm or beauty guarks:
 - Quarkonium: J/ψ , $\psi(2S)$, $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$
 - Open heavy-flavour: B meson, D meson, Λ_c , Λ_b , Σ_c and Ξ_c

• Charm and beauty are produced (in hard scatterings) in the early stages of the collision:

- Large mass $(m_{ch} >> \Lambda_{OCD})$
 - → short formation time
 - \rightarrow hard probes, even at low p_{τ}
- Charm and beauty can experience the full evolution of the system:
 - They live much longer than the duration of the quark-gluon plasma (QGP)
- Quarkonium melting as a signature of QGP
 - Quarkonium destruction in a QGP by Debye screening: melted if $r > \lambda_D$

(Matsui & Satz, PLB178 (1986) 416)

Regeneration

HEPIC How to study heavy quarks?

- Reconstruction via hadronic decays:
 - Prompt and non-prompt D meson reconstruction

$$\Lambda_c^+ \rightarrow p K_s^0$$

$$\Lambda_c^+ \rightarrow p \ K^- \pi^+$$

- Semileptonic decays (electrons and muons): branching ratio of the order of 10%:
 - B, D \rightarrow I + X
 - Separation of electrons from beauty-hadron decays using the impact parameter (long life time of beauty hadrons).
 - At high p_{τ} , it is expected that most of the leptons are from beauty-hadron decays (B).
- Quarkonium via dielectron or dimuon pairs
 - Prompt production
 - $B \rightarrow J/\psi$ (mid-rapidity)

WHEPIC How to study heavy quarks?

The nuclear modification factor

$$R_{\rm AA} = \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\langle T_{\rm AA}\rangle \mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$$

- If $R_{\Delta\Delta} = 1$ (at high p_{τ}): no hot medium effects and no cold nuclear matter effects.
- If $R_{\Delta\Delta} < 1$ (at high p_{τ}): energy loss and/or cold nuclear matter effects.
- Energy loss is expected to depend on the parton colour-charge, parton mass and path length.

$$\Delta E(\pi^{\pm}) > \Delta E(D) > \Delta E(B)$$

$$R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$

PLB 519(2001)199

Anisotropic flow

$$Erac{d^3N}{dp_T^3} = rac{d^3N}{p_T d\phi dp_T dy} \sum_{n=0}^{\infty} 2v_n cos[n(\phi-\Phi_R)]$$

- Anisotropic flow is caused by the initial asymmetries in the geometry of the system produced in a non-central collision.
 - Initial spatial anisotropy of the created particles is converted in momentum anisotropy due to the pressure gradients.
- v_2 : indicates collective motion and thermalization
- *V*₂: event-by-event fluctuations

New J.Phys. 13 (2011) 055008

****HEPIC ALICE** detector

Mid-rapidity ($|\eta|$ < 0.9):

ElectroMagnetic Calorimeter Time of Flight Transition radiation detector Time Projection Chamber

Inner Tracking System

Int. J. Mod. Phys. A 29 (2014) 1430044 JINST3 S08002

Forward rapidity (-4 < η < -2.5) Muon tracking

Results in Pb–Pb collisions

Open heavy-flavour $R_{\rm AA}$

- Strong suppression of open heavy-flavour particles in Pb-Pb collisions
- Mass ordering:
 - $\circ \qquad R_{\Delta\Delta}(\pi) < R_{\Delta\Delta}(\mathbf{D}) \quad (p_{T} < 10 \text{ GeV}/c)$
 - $\circ R_{AA}(c \rightarrow D) < R_{AA}(b \rightarrow D) (4 < p_T < 10 \text{ GeV/}c)$
 - P Hint of $R_{\Delta\Delta}$ (c,b→e) < $R_{\Delta\Delta}$ (b→e) at low P_{T}

$$R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$$

Open heavy-flavour $R_{\rm AA}$

Model comparisons

- Models including collisional (POWLANG, BAMPS el., TAMU) and collisional+radiative energy loss (BAMPS el.+rad., LIDO, PHSD, Catania, MC@sHQ+EPOS2, Djordjevic) can describe the suppression at high p_{τ} (at least qualitatively)
- Models: TAMU, POWLANG, PHSD, MC@sHQ, LIDO and Catania include quark recombination

- Weaker suppression at higher collision energy
 - Effect predicted by regeneration models
- Models including charm-quark regeneration are in good agreement with the data in both mid- and forward-rapidity
 - o TM1 and TM2: includes dissociation and regeneration in QGP and hadronic phase
 - Comovers: suppression via comovers interactions and includes regeneration
 - SHM: charmed particles are generated at chemical freeze-out

$p_{\scriptscriptstyle T}$ dependence, mid vs. forward rapidity

- $p_T < 5 \text{ GeV}/c$: stronger suppression at forward rapidity.
- $p_T > 5$ GeV/c: similar suppression for mid- and forward-rapidity.
- Model uncertainties dominated by total ccbar cross section uncertainty
 - \circ TM1 can describe the data over the whole p_{τ} range for both mid- and forward-rapidities.
 - SHM describes the data qualitatively.

Elliptic flow

- Positive v_2 for prompt D mesons, J/ψ , b \rightarrow e
- $\Upsilon(1S) v_2$ compatible with zero
- For $p_T < 3$ GeV/c, a mass ordering can be observed: $v_2(\Upsilon(1S)) \le v_2(b \rightarrow e) \sim v_2(J/\psi) < v_2(D) < v_2(\pi)$
- For $3 < p_T < 6 \text{ GeV/}c$: $v_2(J/\psi) < v_2(D) \sim v_2(\pi)$ due to charm quark thermalization
- For $p_T > 6$ GeV/c: $v_2(J/\psi) \sim v_2(D) \sim v_2(\pi)$ due to similar path-length dependence of the energy loss

> 0.3 **ALICE** Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV 30–50% $\Phi \pi^{\pm}$, |y| < 0.5• Prompt D, |y| < 0.8• Inclusive J/ψ , 2.5 < y < 40.2 • Inclusive J/ψ , |y| < 0.9**■** b \rightarrow e, |y| < 0.8 Γ (1S) 5–60%, 2.5 < γ < 4 0.1 6 8 12 10 ALI-PUB-352028

JHEP 09 (2018) 006 arXiv:2005.11131 arXiv:2005.14518 arXiv:2005.11130 PRL 123 (2019)192301

Triangular flow

- v_3 of prompt D mesons, J/ψ and π^{\pm}
- For p_{τ} < 5 GeV/c:
 - $0 < v_3(J/\psi) \sim v_3(D) < v_3(\pi^{\pm})$
 - Indication that charm quarks are sensitive to initial state fluctuations

JHEP 09 (2018) 006 arXiv:2005.11131 arXiv:2005.14518

Results in p-Pb collisions

14

$J/ψ R_{pPb}$

Prompt J/ψ is consistent with several model predictions: (EPS09-NLO, CGC+CEM, Energy loss and EPS09 NLO + energy loss)

Non-prompt J/ ψ : FONLL + EPPS16 agrees with data and suggests a small shadowing at low p_T

Theoretical models in good agreement with inclusive J/ψ , despite the very different approaches:

- Shadowing (EP09NLO, nCTEQ15, EPPS16)
- CGC (NRQCD, CEM)
- Energy loss
- Final state effects (Transport, comovers)

J/ψ vs. $\psi(2S)$ R_{pPb}

mid vs. forward rapidity

JHEP 07 (2020) 237

- $\psi(2S)$: suppression compatible at forward and backward rapidities.
 - \circ Stronger suppression than J/ ψ at backward rapidity, whereas compatible at forward rapidity.
 - o Secondary interactions proposed as mechanism to explain this effect

Elliptic flow in p-Pb

- Light-flavour particles flows in p–Pb following a mass ordering → collective behaviour in small systems
- What about heavy-flavour?

- Non-zero v₂ for electrons and muons from heavy-flavour lepton decays
- ν₂ of J/ψ
 - \circ Consistent with zero for $p_{T} < 3 \text{ GeV/}c$
 - $v_2 > 0$ for $p_T > 3$ GeV/c with similar amplitude as measured in semi-central Pb–Pb collisions
- Possible final states effects and collective motion

Results in pp collisions

Open heavy-flavour production vs. multiplicity

- Λ_c^+/D^0 , Σ_c/D^0 and Ξ_c^-/D^0
 - Shows a higher value than in e⁺e⁻ collisions
 - o Increases from low to high multiplicity (Λ_c^+/D^0)
 - Modification not captured by standard hadronization models
- No hadronization universality between e⁺e⁻ and pp
- PYTHIA 8 with Color Reconnection: reasonable reproduction for Λ_c⁺/D⁰ and Σ_c/D⁰ but not Ξ_c/D⁰
- Violation of universal hadronization fractions

J/ψ production vs. multiplicity

Looking for collective behaviour in small systems

- J/ψ self normalized yield
 - o Mid-rapidity: increase faster than linear
 - Enhancement qualitatively described by several model calculations
 - PYTHIA8 which includes multi-parton interactions describes qualitatively the p_{τ} dependence
 - Higher enhancement for higher p_{τ}
 - o Forward-rapidity: shows a linear increase

Conclusions

Pb–Pb collisions:

- Charm diffusion and energy loss constrained by azimuthal anisotropies and nuclear modification factor of heavy-flavour hadrons
- Beauty measurements indicate partial thermalisation and weaker energy loss
- Quarkonium indicating strong regenerated component at late stage

• pp and p-Pb collisions:

- Similar behaviour as in Pb–Pb collisions for hadronization and azimuthal anisotropies;
- Hint of multi-parton interactions affecting the J/ψ yield.

Thank you for your attention!

Cristiane Jahnke

Universidade de São Paulo

NUCLEUS 2020

Friday, 16 October 2020

Backup slides

Heavy-flavour production in pp collisions

- Prompt J/ψ described by NRQCD calculations
- Non-prompt J/ψ described by FONLL calculations