LXX International conference "NUCLEUS – 2020. Nuclear physics and elementary particle physics. Nuclear physics technologies"

PH^{*}ENIX

φ-meson production in small systems collisions

ante de ante

Larionova Mariia For PHENIX collaboration

Big Bang -----> QGP formation
↓
Hadronic gaze

12 october 2020

M.Larionova for PHENIX at Nucleus-2020

φ-meson

• $au_{QGP} < au_{\varphi}$

Clean probe to investigate the

• Small interaction cross-section with nonstrange

properties of QGP

hadrons

φ-meson

• $au_{QGP} < au_{\varphi}$

Clean probe to investigate the

• Small interaction cross-section with nonstrange

properties of QGP

hadrons

• $\varphi(s\bar{s})$

• Measurable up to high-p_T

Signatures of QGP:

Strangeness enhancement

Jet quenching

Heavy Ion collisions

"Baryon puzzle"

Heavy Ion collisions

"Baryon puzzle"

ϕ and K* enhancement

Heavy Ion collisions

"Baryon puzzle"

 ϕ and K^{\ast} enhancement

High-p_T suppression

Heavy Ion collisions

"Baryon puzzle"

 ϕ and K^{\ast} enhancement

 $High-p_{\mathsf{T}} \ suppression$

Elliptic flow scaling

Motivation Small systems

Flow measurements \rightarrow evidence for QGP droplets in small systems

Energy loss in the plasma? If so, it would present itself in the hadrons

spectra

Interpreting Large systems

Nat. Phys. 15, p. 214–220

The PHENIX experiment

M.Larionova for PHENIX at Nucleus-2020

Invariant mass spectra

Systematic uncertainties

Type A: point-to-point uncorrelated

Type B: point-to-point correlated **peak extraction** peak simulation momentum scale

Type C: global or normalization N_{coll} event overlap

Invariant spectra

1 d^2N $N(\Delta p_T)$ 1 1 $\overline{2\pi p_T} \overline{dp_T dy} = \overline{2\pi p_T} \overline{N_{coll} Br} \overline{\varepsilon_{eff}(p_T)} \overline{\Delta p_T \Delta y}$

 p_T - transverse momentum

 Δp_T - transverse momentum interval

y- rapidity

 $N(\Delta p_T)$ - number of mesons, detected by the experimental setup (raw yield)

 N_{coll} - number of collisions in the centrality range

 $\varepsilon_{eff}(p_T)$ - reconstruction efficiency, obtained by Monte-Carlo calculating of the decay, passing and reconstruction of the mesons in the PHENIX experimental setup Br-branching ratio

Invariant spectra

Nuclear modification factors of nuclei collisions are used to study collective effects, affecting the spectra

$$R_{AB} = \frac{f_{bias} \cdot \sigma_{pp}^{inel}}{\langle N_{coll} \rangle} \cdot \frac{d^2 N_{AB} / dy dp_T}{d^2 \sigma_{pp} / dy dp_T}$$

 $d^2N_{AB}/dydp_T$ – per-event yield of particle production in A+B collision

 $d^2\sigma_{pp}/dydp_T$ – the production cross section in p+p collision

 $\langle N_{coll} \rangle$ – number of nucleon-nucleon collisions in A+B system for selected centrality interval

 f_{bias} – Bias factor

 $\sigma_{pp}^{inel} = 42.2 \text{ mb} - \text{total inelastic proton-proton cross section}$

PH*

ENIX

AT INTERMEDIATE PT RANGE:

• Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20%

φ R_{AB} in p+A1, p+Au, d+Au, ³He+Au

AT INTERMEDIATE PT RANGE:

- Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20%
- φ R_{pAu} ≈ R_{dAu} ≈ R_{HeAu} in peripheral collisions

AT INTERMEDIATE PT RANGE:

- Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20%
- φ R_{pAu} ≈ R_{dAu} ≈ R_{HeAu} in peripheral collisions

AT HIGH-PT RANGE:

• ϕR_{AB} 's consistent with each other at high-p_T

Jet quenching is not observed

POLYTECH S POLYTECH $\pi^0 \& \phi R_{AB}$ in p+Al, p+Au, d+Au, ³He+Au

PH

ENIX

Strangeness enhancement is not observed

Might indicate that CNM effects are not responsible for the differences between ϕ and π^0 seen in A+A ¹² october 2020 M.Larionova for PHENIX at Nucleus-2020</sup>

Comparisons to other light hadron's R_{AB} in p+Au collisions

Light mesons R_{AB} exhibit similar shape in contrast to heavy-ion

Qualitatively consistent with the recombination model.

OLYTECH

Peter the Great St.Petersburg Polytechnic

Summary

- > Hint of ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20% at intermediate p_T range
- > In other centralities in all p_T ranges φ meson nuclear modification factors for all light systems exhibit similar shape and equal to unity within uncertainties
 - Jet quenching is not observed
- $\blacktriangleright \phi \& \pi^0$ mesons R_{AB}'s are consistent in all centralities
 - Strangeness enhancement is not observed
 - Cold nuclear matter effects are not responsible for the difference seen in heavy-ion collisions
- $\blacktriangleright \phi \& \pi^0$ mesons R_{AB} 's are consistent in all centralities, while protons R_{AB} 's show enhancement in central collisions
 - Qualitatively consistent with the recombination model

Summary

- > Hint of ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20% at intermediate p_T range
- > In other centralities in all p_T ranges φ meson nuclear modification factors for all light systems exhibit similar shape and equal to unity within uncertainties
 - Jet quenching is not observed
- $\blacktriangleright \phi \& \pi^0$ mesons R_{AB}'s are consistent in all centralities
 - Strangeness enhancement is not observed
 - Cold nuclear matter effects are not responsible for the difference seen in heavy-ion collisions
- $\blacktriangleright \phi \& \pi^0$ mesons R_{AB} 's are consistent in all centralities, while protons R_{AB} 's show enhancement in central collisions
 - Qualitatively consistent with the recombination model

THANK YOU FOR ATTENTION!