

Charged particle identification using the Time—of—Flight method in the BM@N experiment

K. Alishina,

on behalf of the BM@N collaboration

JINR, Dubna, Russia

LXX International conference "NUCLEUS – 2020. Nuclear physics and elementary particle physics.

Nuclear physics technologies"

Outline

- NICA project
- Development of BM@N (Baryonic Matter at Nuclotron)
- Argon nucleus interaction
- CT to CSC track matching using detectors modelling
- Matching Central tracker CSC TOF
- Time of Flight method
- Data and MC Si/GEM/ CSC/ TOF efficiencies
- First results of identification
- Summary

Heavy-Ion Collisions

- At \sqrt{s} energies of 2 4.5 GeV, nucleon densities in a collision zone exceed the saturation density by the factor of 3-4.
- Hadrons with strangeness are early produced in the collision and not presented in the initial state of two colliding nuclei.
- Heavy-ion collisions are a rich source of strangeness, and the coalescence of kaons with lambdas or lambdas with nucleons will produce a vast variety of multi-strange hyperons or of light hypernuclei.

K^+/π^+ ratio

- The K^+/π^+ ratio shows a rapid rise at energy increasing with a maximum ("horn") at incident $\sqrt{8}$ GeV and a saturation at SPS (Super Proton Synchrotron) energies.
- The "horn" has been interpreted as a possible indication for the observation of deconfinement in the fireball.
- Confirmation of peak-like structure in the K^+/π^+ ratio by an independent experiment would certainly stir up the debate on a possible signature for the deconfinement phase transition.

NICA project

$$\label{eq:snn} \begin{split} \sqrt{s_{NN}} &= 11~GeV~(for~+79~Au,~in~the~nucleon-nucleon\\ center~of~mass~system)~luminosity~of~L = 10^{27}~cm^{-2}s^{-1},\\ which~allows~to~study~nuclear~matter~at~maximum\\ baryonic~density \end{split}$$

Baryonic Matter at Nuclotron

Setup of BM@N for RUN-7 in spring 2018

- BM@N is the first experiment with a fixed target at the NICA.
- It is designed to study nuclear-nuclear collisions at high densities.
- The Nuclotron provides heavy ion beams with energies ranging

from 2.3 to 4.5 GeV

November 2017 Technical work before the 7th run

Beam parameters and setup at different stages of BM@N experiment

	Run 5	Run 6	Run 7	Run 8	
Year	2016	2017 spring	2018 spring	fall 2021	2022
Beam	d(↑)	С	Ar,Kr, C(SRC)	Kr,Xe	up to Au
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	0.5M
Trigger rate, Hz	5k	5k	10k	10k	10k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + forward Si planes	7 GEM full planes + forward Si + 2 large STS planes
Experiment al status	technical run	technical run	technical run+physics	physics run	stage1 physics

Argon - nucleus interaction

Run 7:

Inelastic reactions Ar (Kr) + target → X on targets C, Al, Cu, Sn, Pb

- Hyperon production measured in central tracker (Si + GEM)
- Charged particles and nuclear fragments identified with ToF

Detector setup for argon run

Ar beam, T_0 = 3.2 GeV/n XX

Kr beam, T_0 = 2.4 (2.9)

GeV/n

Central tracker in run 7

CT to CSC track matching using detectors modelling

p_{mc}, GeV/c

Matching CT- CSC-TOF400

Gas Electron Multiplier (GEM) system:

To measure momenta of a charged particle and reconstruct the interaction point. **Time - of - Flight (TOF400) system** – time - of - flight of a charged particle.

Cathode Strip Chamber (CSC): filter fake tracks.

Matching procedure:

- 1. Extrapolate track from the central tracker to the Z of the CSC and TOF.
- 2. Tracks criteria:
- 2.1 Point from this track should be in CSC and TOF400;
- 2.2 Extrapolated track should be in acceptance of CSC and TOF;
- 2.3 Selected tracks with \geq 5 hits;
- 3. Looking for nearest hit in the fixed gate.
- 4. Estimate efficiency.

Real CSC det. In the BM@N setup.

16.10.2020 K. Alishina

UrQMD

• Charged particle identification was performed using the Time - of - Flight method.

$$m=p\sqrt{\frac{1}{\beta^2}-1}, \beta=\frac{L}{ct},$$

m – mass of the particle, p – momentum of the particle, L – length of particle track, c – speed of light, t – time - of - flight.

• We used m² vs p distribution to determine momentum resolution in our experiment.

$$\frac{dm^2}{m^2} = \sqrt{\left(\frac{dp}{p}\right)^2 + \left(\frac{2}{1-\beta^2}\right)^2 \left(\frac{dt}{t}\right)^2 + \left(\frac{2}{1-\beta^2}\right)^2 \left(\frac{dL}{L}\right)^2}.$$

• For the low momentum, m² uncertainty is determined by the particle momentum uncertainty, and for the high momentum, it is determined by the time-of-flight due to Lorentz factor.

Ar data (March 2018), β vs p/q plot bands for π^+ , K +, p, He³, d/He⁴, t are clearly visible (TOF 400).

- m^2 distribution is used to extract the number of K^+ and π^+ .
- Two sources of background are taken into account while extracting the number of K^+ : from π^+ (Gaus fit) and from misidentified tracks (p0 fit).
- About $2 \cdot 10^3$ K⁺ and 10^5 π ⁺ were identified in full Ar data.

Data and MC Si/GEM efficiencies

Argon Data

Runs 3756-4704, station 1 12 10 8 6 4 2 0 0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

MC simulation

Low MC efficiency for Si1 at X~-5 cm

Data and MC Si/GEM efficiencies

Argon Data

MC simulation

x, cm

Data and MC CSC efficiencies

- Good runs runs with Efficiency CSC > 40% in the Main zone
- MC and Data efficiencies are close to each other

Data and MC TOF 400 efficiencies

MC

Status of identification

- We use UrQMD(Ultra-relativistic Quantum Molecular Dynamics) generator
- MC geometry for Si/GEM/CSC/TOF400 matches Data geometry by strips
- For MC we use the same Lorenz shifts in GEM as for Data
- MC signals for Si/GEM/CSC match Data signals
- MC Si/GEM residuals match Data residuals
- For Data and MC we use the same reconstruction chain
- MC efficiencies for Si/GEM/CSC/TOF400 close to the Data efficiencies
- We embedded MC π^+ to the Data to calculate Embedding Efficiency

Results of identification comparison for Data and MC with efficiencies

Results of identification comparison for Data and MC with efficiencies

Summary

On detector subsystems of BM@N:

- CSC test outer tracker plane shows its good usability. Technique of CSC assembly is set up. CSC detector description is implemented into the reconstruction chain of the BM@N experiment.
- Tracks from Central Tracker were refined using CSC and matched to the TOF hits.
- During the analysis process, the TOF400 calibration was improved and high time resolution ($\Delta t = 84 \text{ ps}$) was achieved.
- Good performance of CSC motivate their extended usage in the next run.
- Matching of central tracker, DCH outer tracker and TOF700 was successfully performed.
- During the analysis process, good time resolution for TOF700 was achieved.

The first results on identification were obtained:

- Obtained m² distribution match for Data and MC in (π^+, K^+) region
- Pt spectra of π^+ and K⁺ for Data and MC close to each other
- P and Y spectra of K⁺ for Data and MC close to each other
- P and Y spectra of π + for Data and MC significantly different
- As a result, good quality of charged particles identification was obtained and a tiny K^+ signal was separated from a large π^+ contribution

Thank you for attention!

Backup

Residual GEM+CSC+TOF400

Backup

Residual GEM+CSC+TOF400+DCH+TOF700.

ual X Residual Y

Backup

Efficiency for a good track GEM + DCH \implies matching with hit TOF700. Small square dip in efficiency at XY in the region (30,40) connected by signal bounce in the chamber 5.1