Exploring nuclear fragmentation at heavy-ion colliders

Aleksandr Svetlichnyi*, Roman Nepeyvoda, Igor Pshenichnov
MIPT, INR RAS
*aleksandr.svetlichnyy@phystech.edu
Outline

• Can we evaluate the role of nuclear fragmentation at heavy-ion colliders?

• Our model: Abrasion-Ablation Monte Carlo for Colliders (AMCC)

• Universality of nuclear fragmentation: from SPS to LHC

• Characteristics of nuclear fragmentation at colliders can be predicted as functions of collision centrality:
 - total charge bound in fragments Z_{bound}
 - multiplicity of fragments with a given charge $N_{Z=1}, N_{Z=2}, \ldots$
 - n/p-ratio for free spectator nucleons
 - multiplicity of spectator neutrons
Nuclear fragmentation at heavy-ion colliders?

- Presently only spectator neutrons and protons can be detected in forward calorimeters at RHIC1) and LHC2,3).

- Nuclear spectator fragments remain undetected.

- There is a proposal to install a detector of spectator fragments at RHIC4) to study fragmentation directly, but its status is not yet defined.

- However, one can use the information on the number of nucleon-nucleon collisions N_{NN} extracted from multiplicity of produced particles to estimate the collision centrality3).

- Within a fragmentation model N_{NN} or centrality can be related to multiplicity of spectator fragments, Z_{bound} and other characteristics of spectator matter in each event.

1) C. Adler et al., NIM A 499 (2003) 433-436
2) G. Puddu et al., NIM A 581, 1-2 (2007)
3) B. Abelev et al., PRC 88, 044909 (2013)
4) S. Tarafdar et al., NIM A 768 170-178 (2014)
AAMCC

- Our model **Abrasion-Ablation Monte Carlo for Colliders (AAMCC)**\(^1\) written in C++ is based on the famous Glauber Monte Carlo v.3.0\(^2\) and models of decays of excited nuclei from Geant4 toolkit\(^3\) (G4Evaporation, G4SMM, G4FermiBreakUp).

- A difference in proton and neutron density distributions in colliding nuclei is taken into account in GlauberMC v3.0.

- We tested and improved\(^4\) G4SMM (E*/A\(_{pf}\) > 3 MeV) and G4FermiBreakUp (the latter is for explosive decays of Z < 9, A < 19 nuclei).

\(^2\) C. Loizides, J. Kamin, D. d’Enterria, PRC **97** (2018) 054910

\(^4\) I. Pshenichnov., A.S. Botvina, I. Mishustin, W. Greiner, NIMB **268** (2010) 604
Two kinds of correlation between excitation energy and prefragment volume are implemented in AAMCC

\[\rho_e(E_x, a) = \frac{g_0^a}{a!(a-1)!} E_x^{a-1} \]

Level density in the particle-hole model: Ericson formula

\[1 - \frac{a}{A} = 1 - 0.015 \left(\frac{E_x}{(A - a)} \right)^2 \]

Empirical approximation by ALADIN collaboration

\(E_x \) – excitation energy
\(a \) – number of removed nucleons
\(A \) – mass number of the initial nucleus

Level density parameter \(g_0 \approx 16 \text{ MeV}^{-1} \)
AAMCC: comparison with experiment

Good description of these data in general with ALADIN approximation

EMU-01/12 collaboration – ZPA 359, 277 (1997)
Universality of fragmentation

Only slight changes of fragmentation from SPS to LHC in central collisions
Charge bound in fragments as a function of N_{NN}

Could be obtained via N_{part}, neutron and proton multiplicities

$Z_{bn} = \sum_{Z_i \geq n} Z_i$

$Z_{bound}, Z_{b2}, Z_{b3}, Z_{b7}$ decrease as N_{NN} increases because the volume of spectator matter decreases and prefragment becomes hotter.
Multiplicity of fragments with given charge

Several fragments are produced in events with $400 < N_{NN} < 1000$

Indication of multifragment decays in semi-peripheral events
Multiplicity of nuclear fragments as a function of N_{NN}

The famous rise and fall of multifragmentation is evident in peripheral events. Several neutrons, deuterons, tritons and alpha-particles are produced via evaporation from heavy nuclei.

$$\langle M_F \rangle = 7.920$$

$$\langle M_{IMF} \rangle = 1.434$$

The famous rise and fall of multifragmentation is evident.
n/p-ratio as a function of N_{NN}

Significant increase in peripheral events with small N_{NN}.

Indicates the dominance of evaporation.
n/p-ratio for free nucleons

Central collision

Peripheral collision

n/p-ratio is close to the ratio for the initial nucleus.

Mostly neutrons are evaporated from heavy nuclei at low excitations.
Significant rise of neutron yield in peripheral events. A huge rise of n/p-ratio as a consequence.
Neutrons vs. N_{NN}

Can be measured by ALICE, STAR or other collider experiments

Results are very sensitive to the method to calculate excitation energy of prefragments
Neutrons vs. Z_{bound}

While the general shape of the correlation is preserved at the LHC, a higher yield of central events with small Z_{bound} is predicted due to a larger σ_{NN} at the LHC.

A subject of further studies
Summary

- By means of AAMCC model the number of NN-collisions in a PbPb event can be correlated with characteristics of spectator fragmentation, in particular with multiplicities of spectator neutrons and protons and their n/p-ratio.

- Such correlations can be measured at the LHC or elsewhere.

- According to AAMCC spectator fragmentation is quite violent. Average fragment multiplicities in minimum bias events are:
 \[\langle M_F \rangle = 7.920 \quad \langle M_{IMF} \rangle = 1.434 \]

- \(Z_{\text{bound}} \) is decreasing monotonically with the number of NN-collisions.

- While the characteristics of nuclear fragmentation as functions of \(Z_{\text{bound}} \) very similar at SPS and LHC, some interesting deviations are predicted in very central events due to changes in \(\sigma_{\text{NN}} \).
Thank you for attention!

This work has been carried out with financial support of RFBR within the project 18-02-40035-mega