The comparison of methods for anisotropic flow measurements with the MPD Experiment at NICA

<u>Petr Parfenov</u>, Vinh Ba Luong, Dim Idrisov, Arkadiy Taranenko, Alexander Demanov, Anton Truttse

NRNU MEPhI

for the MPD Collaboration

LXX International conference "NUCLEUS – 2020. Nuclear physics and elementary particle physics", 11-17 October 2020

This work is supported by:

the RFBR according to the research project No. 18-02-40086

the European Union's Horizon 2020 research and innovation program under grant agreement No. 871072 the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental properties of elementary particles and cosmology" No 0723-2020-0041

Outline

- Anisotropic flow at NICA energies
- MPD experiment at NICA
- Flow performance in MPD
 - Methods descriptions
 - Performance study for v_1 and v_2 using different methods
 - Au+Au vs. Bi+Bi comparison
- Summary and outlook

- Both directed and elliptic flow are sensitive to the transport properties of the dense matter produced in the HIC (EoS, η /s, c_s, etc.)
- Large passing time \rightarrow strong spectator influence on flow signal

Rapidity dependence of directed flow: JAM EoS comparison

JAM model: http://www.aiu.ac.jp/~ynara/jam/, Phys. Rev. C 72 (2005) 064908; STAR data: Phys. Rev. Lett. 120 (2018) 62301

Elliptic flow: beam-energy dependence

- At $\sqrt{s_{_{NN}}}$ =4.5 GeV pure string/hadronic cascade models give similar v₂ signal compared to STAR data
- At $\sqrt{s_{NN}}$ =7.7 GeV pure string/hadronic cascade models underpredict v₂

Flow performance study at MPD (NICA)

Multi Purpose Detector (MPD)

2<η<5

Setup, event and track selection

Event plane method implementation in MPD (NICA)

 $\operatorname{Res}_{n}^{2}\left[\Psi_{m}^{EP,L},\Psi_{m}^{EP,R}\right] = \langle \cos[n(\Psi_{m}^{EP,L}-\Psi_{m}^{EP,R})] \rangle$

 $v_n = \frac{\left\langle \cos[n(\Psi_{RP} - \Psi_m^{EP})] \right\rangle}{Res_n \left\{ \Psi_m^{EP, true} \right\}}$

 $Res_{n} \left[\Psi_{m}^{EP, true} \right] = \langle \cos[n(\Psi_{RP} - \Psi_{m}^{EP})] \rangle$

$$Q_{x}^{m} = \frac{\sum \omega_{i} \cos (m \varphi_{i})}{\sum \omega_{i}}, Q_{y}^{m} = \frac{\sum \omega_{i} \sin (m \varphi_{i})}{\sum \omega_{i}}, \Psi_{m}^{EP} = \frac{1}{m} \operatorname{ATan2}(Q_{y}^{m}, Q_{x}^{m})$$

FHCal EP: $m = 1, \ \omega = E$
TPC EP: $m = 2, \ \omega = p_{T}$

- Both FHCal and TPC detecors were used for EP:
 - $\Delta\eta$ -gap>0.05 for TPC EP
 - $\Delta\eta$ -gap>0.5 for FHCal EP

Direct cumulants method

Particle azimuthal moments:

$$\langle 2 \rangle_n = \langle e^{in(\varphi_i - \varphi_j)} \rangle \approx v_n^2 + \delta_n$$

$$\langle 4 \rangle_n = \langle e^{in(\varphi_i + \varphi_j - \varphi_k - \varphi_l)} \rangle \approx v_n^4 + 4 v_n^2 \delta_n + 2 \delta_n^2$$

$$\delta - \text{ is nonflow}$$

$$\langle 2 \rangle_{n} = \frac{|Q_{n}|^{2} - M}{M(M-1)}, Q_{n} \equiv \sum_{i=1}^{M} e^{in\varphi_{i}}$$

$$\langle 4 \rangle_{n} = \frac{|Q_{n}|^{4} + |Q_{2n}|^{2} - 2|Q_{2n}Q_{n}^{*}Q_{n}^{*}| - 4M(M-2)|Q_{n}|^{2} + 2M(M-3)}{M(M-1)(M-2)(M-3)}$$

Average over all events (RFP): $v_n \{2\}^2 = \langle \langle 2 \rangle \rangle_n$ $v_n \{4\}^4 = 2 \langle \langle 2 \rangle \rangle_n^2 - \langle \langle 4 \rangle \rangle_n$ For exclusive region (POI):

$$v_{n} \{ 2' \} = \frac{\langle \langle 2' \rangle \rangle_{n}}{\sqrt{\langle \langle 2 \rangle \rangle_{n}}}$$
$$v_{n} \{ 4' \} = \frac{2 \langle \langle 2' \rangle \rangle_{n} \langle \langle 2 \rangle \rangle_{n} - \langle \langle 4' \rangle \rangle_{n}}{\left(2 \langle \langle 2 \rangle \rangle_{n}^{2} - \langle \langle 4 \rangle \rangle_{n} \right)^{3/4}}$$

- Reference Flow Particle (RFP) integrated flow over the event (centrality dependence)
- Particle Of Interest (POI) differential flow (centrality, p_{τ} , ...)

The method was introduced by Ante Bilandzic in Phys.Rev.C 83 (2011) 044913

Acceptance filter

Area $15^{\circ} < \phi < 45^{\circ}$ is off

-40 -20

40

X, cm

20

0

Modules 15 (L) and 28 (R) are off

p_T -dependence of v_1 and v_2 of reconstructed signal

Both directed and elliptic flow results after reconstruction and resolution correction are consistent to that of MC simulation

 $v_2(p_T)$: FHCal EP vs TPC EP

Expected small difference between v_2 measured with respect TPC ($\Psi_{2,EP}$) and FHCal ($\Psi_{1,EP}$)

Direct cumulant measurements in MPD (NICA)

Elliptic flow results using direct cumulant and EP methods after reconstruction are consistent to that of MC simulation

$v_1(y)$: Bi+Bi vs Au+Au

Expected small difference for v1 (y) for particles produced in Au+Au and Bi+Bi collisions. 15

 $v_n(p_T)$: Bi+Bi vs Au+Au

Au+Au and Bi+Bi collisions.

Summary

- Comparison of models with STAR data shows that at NICA energy range:
 - Slope $dv_1/dy|_{y=0}$ of protons changes sign with centrality
 - v_2 shows non-monotonic growth with increasing beam energy (from $\sqrt{s_{NN}} = 4.5$ to 7.7 GeV)
- Full reconstruction chain was implemented in MPD:
 - Combined particle identification based on TPC and TOF
 - Realistic hadronic simulation (GEANT4)
 - Corrections allow us to perform flow measurements even with non-uniform acceptance
- Reconstructed v_1 , v_2 are in an agreement with MC generated data for both event plane and direct cumulant methods
- v_1 and v_2 show small difference between Au+Au and Bi+Bi collisions

Thank you for your attention!

Good agreement between Event Plane and Scalar Product methods ¹⁹

Eccintricity: Bi+Bi vs Au+Au

UrQMD model predicts small difference between ε_n of Au+Au and Bi+Bi 20

Direct cumulants in MPD

 v_2 {2} and $v_2(\Psi_{2,EP})$ are in a good agreement v_2 {4} and $v_2(\Psi_{1,EP})$ are smaller compared to v_2 {2} due to fluctuations and nonflow 21

EP Resolution: Bi+Bi vs Au+Au

Expected small difference between EP resolutions for Au+Au and Bi+Bi

Direct cumulant measurements in MPD (NICA)

v₂{2} and v₂(Ψ_{2,EP}) are in a good agreement
v₂{4} is smaller compared to v₂{2} and v₂(Ψ_{2,EP})

Resolution correction factor: GEANT3 vs GEANT4 comparison

GEANT4 has more realistic hadronic shower simulation In the future: use models with fragments in the spectator area