Probing properties of pion- and kaon-emitting sources at NICA energies

Grigory Nigmatkulov¹, P. Batyuk⁴, Y. Khyzhniak¹, O. Kodolova², L. Malinina²,⁴, K. Mikhaylov³,⁴

1. NRNU MEPhI
2. SINP MSU
3. ITEP
4. JINR

The reported study was funded by RFBR according to the research project № 18-02-40044

The QCD Phase Diagram

Main goals

• Explore QCD phase diagram, study the Equation of State (EoS) and transport properties of the medium
• Search for the 1st-order phase transition and critical point
• Study turn-on and turn-off signatures of sQGP

How to study

• Collisions of ions at various energies
 • BES-I and BES-II programs at RHIC
 • MPD and BM@N experiments at NICA
 • NA61/SHINE experiment at SPS
Searches for the First-order Phase Transition

- **Softening of the EoS**
 - Could be observed in the dv_1/dy slope
 - Strong softening: consistent with the 1st-order phase transition
 - Weaker softening: likely due to crossover

- **Time delays of the particle emission**
 - Could be observed using femtoscopy technique

D.H. Rischke, M. Gyulassy. NPA 608 (1996) 479

G. Nigmatkulov et al. NUCLEUS-2020
Correlation Femtoscopy

- Two-particle correlation function (CF):
 \[\text{CF}(p_1, p_2) = \int d^4r \, S(r, k) \, |\Psi_{1,2}(r, k)|^2 \]
 \[r = x_1 - x_2 \text{ and } q = q_{\text{inv}} = p_1 - p_2 \]
- Experimentally:
 \[\text{CF}(q) = A(q)/B(q) \]
 - A(q) – contain quantum statistical (QS) correlations and final state interactions (FSI)
 - B(q) – obtained via mixing technique (does not contain QS and FSI)

The relative pair momentum can be projected onto the Bertsch-Pratt, out-side-long system:
- \(q_{\text{long}} \) – along the beam direction
- \(q_{\text{out}} \) – along the transverse momentum of the pair
- \(q_{\text{side}} \) – perpendicular to longitudinal and outward directions

Correlation functions are constructed in Longitudinally Co-Moving System (LCMS), where \(p_{1z} + p_{2z} = 0 \)

S. Pratt. PRD 33 (1986) 1314
Why Correlation Femtoscopy?

- Access to the spatial and temporal information about a particle-emitting source at kinetic freeze-out

- Different particle species are sensitive to various effects (Final State Interactions (FSI), transport properties, asymmetries, etc...)

- Femtoscopy provides strong model constraints

V.M. Shapoval et al. NPA 968 (2017) 391
D.H. Rischke, M. Gyulassy. NPA 608 (1996) 479

G. Nigmatkulov et al. NUCLEUS-2020

S. Pratt et al. PRL 114 (2015) 202301
Femtoscopy: World Systematics

- Precise measurements in a broad energy range (from 7.7 GeV to 2.76 TeV)
- Need more high-statistics measurements at low energies
- Precise measurements exist only with pions
 - Need heavier particles

G. Nigmatkulov et al. NUCLEUS-2020

R. Lacey. PRL 114 (2015) 142301

G. Nigmatkulov et al. NUCLEUS-2020
Femtoscopy with Strange Particles

- Contain strange (anti)quark
- Enhancement of strange particle yields was one of the first suggested signatures of QGP
 J. Rafelski and B. Muller. PRL 48 (1982) 1066

- Interesting behavior was observed in K/π ratios at NICA energies
- Could be sensitive to different production mechanisms at low collision energies

We would like to explore the quark-gluon matter at NICA/FAIR/RHIC energies using femtoscopy technique

This talk is dedicated to the study with
the UrQMD (micr. descr.) and
VHLLE (viscous hydrodynamics + resc.) models

J. Rafelski and B. Muller. PRL 48 (1982) 1066

G. Nigmatkulov et al. NUCLEUS-2020
Correlation Functions from UrQMD

- Examples of the correlation functions of pions and kaons obtained for Au+Au collisions at \(\sqrt{s_{NN}} = 11.5 \) GeV

- Correlation functions were fitted with:

\[
C(q_{\text{out}}, q_{\text{side}}, q_{\text{long}}) = 1 + \lambda e^{-R_{\text{out}}^2 q_{\text{out}}^2 - R_{\text{side}}^2 q_{\text{side}}^2 - R_{\text{long}}^2 q_{\text{long}}^2}
\]

Where:

\(R_{\text{side}} \) – size of the emission region

\(R_{\text{out}} \) – sensitive to the emission duration

\(R_{\text{long}} \) – proportional to the system lifetime

| | \(q_{\text{other}} \) | < 0.05 GeV/c

G. Nigmatkulov et al. NUCLEUS-2020
Correlation Functions from vHLLE

• Examples of the correlation functions for pions obtained for Au+Au collisions at $\sqrt{s_{NN}}=11.5$ GeV obtained for two equations of state:
 • XPT – cross over
 • 1PT – first-order phase transition

• Correlation functions were fitted with:

$$C(q_{out}, q_{side}, q_{long}) = 1 + \lambda e^{-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2}$$

Where:

- R_{side} – size of the emission region
- R_{out} – sensitive to the emission duration
- R_{long} – proportional to the system lifetime
Femtoscopic radii are sensitive to the type of the phase transition

Cross over EoS reasonably describes measured femtoscopic radii

$R_{\text{out}}/R_{\text{side}}$ (XPT) agrees with STAR data points at 7.7 and 11.5 GeV but then increases with increasing collision energy

P. Batyuk et al. NUCLEUS-2020
Femtoscopic Radii of Pions from UrQMD and vHLLE

- Femtoscopic radii of pions decrease with increasing transverse mass
 - Influence of radial flow
- R_{side} increases going from peripheral to central collisions
 - Geometrical picture of ion-ion collision
- UrQMD shows similar results to vHLLE with 1PT
- vHLLE with XPT reasonably describe STAR data
Femtoscopic Radii of Pions and Kaons from UrQMD

- Femtoscopic radii of pions decrease with increasing transverse mass
 - Influence of radial flow
- R_{side} values for pions and kaons are similar
 - Similar size of the particle-emitting region
- R_{long} for kaons is generally larger than that for pions at the same m_T
 - Influence of resonances?
- R_{out} pions and kaons behave differently
 - Different emission duration?
 - Change of the production mechanism?
• Pion and kaon results for the cross over (XPT) and 1st-order (1PT) phase transitions
• Femtoscopic radii of pions decrease with increasing transverse mass
 • Influence of radial flow
• R_{side} values for pions and kaons are similar
 • Similar size of the particle-emitting region
• R_{out} for both pions and kaons show similar behavior
 • Similar particle emission duration?
• R_{long} for kaons is generally larger than that for pions at the same m_T
 • Influence of resonances?
Energy dependence of femtoscopic radii

- Estimated radii for NICA energy range ($\sqrt{s_{NN}}= 4$-11 GeV)
- Pion radii slightly increase with increasing collision energy
- Excitation function of R_{long} suggests a slight increase of the system lifetime with increasing $\sqrt{s_{NN}}$
Summary

- We performed the first model estimation of kaons femtosopic radii using the UrQMD and vHLLE models.
- Pion femtosopic radii decrease with increasing transverse momentum.
- Experimental pion radii can be reasonably described by vHLLE with XPT.
- Kaon radii dependence as a function of transverse mass shows:
 - R_{side} values for pions and kaons are similar for vHLLE and behaviour is different for UrQMD.
 - R_{long} for kaons is generally larger than that for pions.
- Energy dependence of R_{long} for both pions and kaons at NICA energies suggests a slight increase of the system lifetime.