QCD phase diagram: baryon density, isospin and chiral imbalance

 ${\bf Roman~N.~Zhokhov}$ ${\bf IZMIRAN,~IHEP}$ LXX International conference "NUCLEUS – 2020"

и математики

K.G. Klimenko, IHEP T.G. Khunjua, University of Georgia, MSU

in the broad sense our group stems from Department of Theoretical Physics, Moscow State University Prof. V. Ch. Zhukovsky

details can be found in

JHEP 06 (2020) 148 arXiv:2003.10562 [hep-ph]
Phys.Rev. D100 (2019) no.3, 034009 arXiv: 1904.07151 [hep-ph]
JHEP 1906 (2019) 006 arXiv:1901.02855 [hep-ph]
Eur.Phys.J. C79 (2019) no.2, 151, arXiv:1812.00772 [hep-ph],
Phys.Rev. D98 (2018) no.5, 054030 arXiv:1804.01014 [hep-ph],
Phys.Rev. D97 (2018) no.5, 054036 arXiv:1710.09706 [hep-ph]
Phys.Rev. D95 (2017) no.10, 105010 arXiv:1704.01477 [hep-ph]

The work is supported by

➤ Russian Science Foundation (RSF) under grant number 19-72-00077

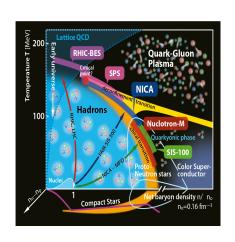
► Foundation for the Advancement of Theoretical Physics and Mathematics

Фонд развития теоретической физики и математики QCD at T and μ (QCD at extreme conditions)

- neutron stars
- ▶ heavy ion collisions
- ► Early Universe

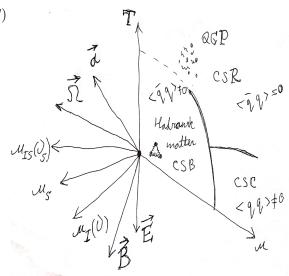
Methods of dealing with QCD

- ► First principle calcultion
 lattice QCD
- ► Effective models
- ► DSE, FRG



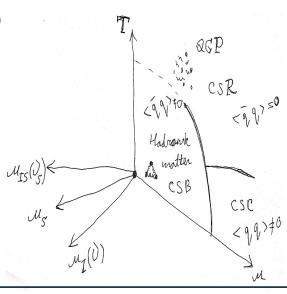
More than just QCD at (μ, T)

- more chemical potentials μ_i
- ► magnetic fields
- ightharpoonup rotation of the system $\vec{\Omega}$
- ightharpoonup acceleration \vec{a}
- ► finite size effects (finite volume and boundary conditions)



More than just QCD at (μ, T)

- ▶ more chemical potentials μ_i
- ▶ magnetic fields
- ▶ rotation of the system
- ▶ acceleration
- ► finite size effects (finite volume and boundary conditions)



Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Baryon chemical potential μ_B

Allow to consider systems with non-zero baryon densities.

$$\frac{\mu_B}{3}\bar{q}\gamma^0 q = \mu\bar{q}\gamma^0 q, \qquad n_B = \frac{1}{3}(n_u + n_d)$$

Isotopic chemical potential μ_I

Allow to consider systems with isospin imbalance $(n_n \neq n_p)$.

$$\frac{\mu_I}{2} \bar{q} \gamma^0 \tau_3 q = \nu \left(\bar{q} \gamma^0 \tau_3 q \right)$$

$$n_I = n_u - n_d \quad \longleftrightarrow \quad \mu_I = \mu_u - \mu_d$$

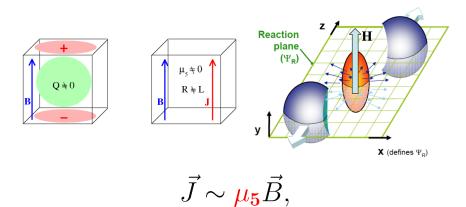
chiral (axial) chemical potential

Allow to consider systems with chiral imbalance (difference between densities of left-handed and right-handed quarks).

$$n_5 = n_R - n_L \quad \longleftrightarrow \quad \mu_5 = \mu_R - \mu_L$$

The corresponding term in the Lagrangian is

$$\mu_5 \bar{q} \gamma^0 \gamma^5 q$$



A. Vilenkin, PhysRevD.22.3080,

K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78 (2008) 074033



► Chiral isospin imbalance n_{I5} and hence μ_{I5} can be **generated by** $\vec{E} \parallel \vec{B}$ (for n_5 and μ_5 M. Ruggieri, M. Chernodub, H. Warringa et al)

▶ in dense quark matter

- ► Chiral separation effect (Thanks for the idea to Igor Shovkovy)
- ► Chiral vortical effect

Notations 12

Different chemical potentials and matter content

$$\mu = \frac{\mu_B}{3}, \quad \nu = \frac{\mu_I}{2}, \quad \mu_5, \quad \nu_5 = \frac{\mu_{I5}}{2}$$

NJL model can be considered as **effective model for QCD**.

the model is **nonrenormalizable** Valid up to $E < \Lambda \approx 1 \text{ GeV}$ $\mu, T < 600 \text{ MeV}$ Parameters G, Λ, m_0 chiral limit $m_0 = 0$

dof– quarks, no gluons only four-fermion interaction attractive feature — dynamical CSB the main drawback – lack of confinement (PNJL)

$$\mathcal{L} = \bar{q} \left[\gamma^{\nu} i \partial_{\nu} + \frac{\mu_B}{3} \gamma^0 + \frac{\mu_I}{2} \tau_3 \gamma^0 + \frac{\mu_{I5}}{2} \tau_3 \gamma^0 \gamma^5 + \mu_5 \gamma^0 \gamma^5 \right] q + \frac{G}{N_c} \left[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 \right]$$

is the flavor doublet, $q=(q_u,q_d)^T$, where q_u and q_d are four-component Dirac spinors as well as color N_c -plets; τ_k (k=1,2,3) are Pauli matrices.

To find the thermodynamic potential we use a semi-bosonized version of the Lagrangian

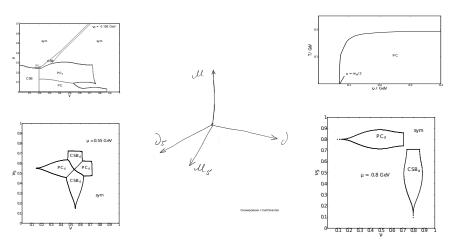
$$\widetilde{L} = \overline{q} \Big[i \partial \!\!\!/ + \mu \gamma^0 + \nu \tau_3 \gamma^0 + \nu_5 \tau_3 \gamma^0 \gamma^5 + \mu_5 \gamma^0 \gamma^5 - \sigma - i \gamma^5 \pi_a \tau_a \Big] q - \frac{N_c}{4G} \Big[\sigma^2 + \pi_a^2 \Big].$$

$$\sigma(x) = -2\frac{G}{N_c}(\bar{q}q); \quad \pi_a(x) = -2\frac{G}{N_c}(\bar{q}i\gamma^5\tau_a q).$$

Condansates ansatz $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ do not depend on spacetime coordinates

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \pi, \quad \langle \pi_2(x) \rangle = 0, \quad \langle \pi_3(x) \rangle = 0.$$

where M and π are already constant quantities.



Chiral imbalance leads to the generation of PC in dense quark matter (PC_d)

Dualities 16

Dualities

It is not related to holography or gauge/gravity duality

it is the dualities of the phase structures of different systems

The TDP

$$\Omega(T,\mu,\mu_i,...,\langle \bar{q}q\rangle,...)$$

$$\Omega(T, \mu, \mu_i, ..., \langle \bar{q}q \rangle, ...) \qquad \Omega(T, \mu, \nu, \nu_5, ..., M, \pi, ...)$$

$$\Omega(T, \mu, \mu_i, ..., \langle \bar{q}q \rangle, ...)$$
 $\Omega(T, \mu, \nu, \nu_5, ..., M, \pi, ...)$

The TDP (phase daigram) is invariant under Interchange of - condensates - matter content

$$\Omega(M, \pi, \nu, \nu_5)$$

$$M \longleftrightarrow \pi, \qquad \nu \longleftrightarrow \nu_5$$

$$\Omega(M,\pi,\nu,\nu_5) = \Omega(\pi,M,\nu_5,\nu)$$

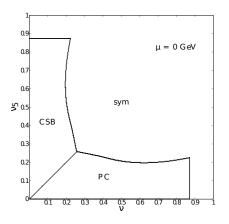


Figure: NJL model results

$$\Omega(M, \pi, \nu, \nu_5) = \Omega(\pi, M, \nu_5, \nu)$$

$$\mathcal{D}: M \longleftrightarrow \pi, \quad \nu \longleftrightarrow \nu_5$$

Duality between chiral symmetry breaking and pion condensation

$$PC \longleftrightarrow CSB \quad \nu \longleftrightarrow \nu_5$$

Duality was found in

- ► In the framework of NJL model
- ▶ In the leading order of large N_c approximation or in mean field
- ► In the chiral limit

$$\mathcal{L}_{\text{QCD}} = \sum_{f=u,d} \bar{q}_f (i \not \! D - m_f) q_f - \frac{1}{4} \mathcal{G}_{\mu\nu,a} \mathcal{G}_a^{\mu\nu}$$

$$\mathcal{L}_{\text{NJL}} = \sum_{f=u,d} \bar{q}_f \left[i \gamma^{\nu} \partial_{\nu} - m_f \right] q_f + \frac{G}{N_c} \left[(\bar{q}q)^2 + (\bar{q}i \gamma^5 \vec{\tau}q)^2 \right]$$

 m_f is current quark masses, $m_f: \frac{m_u + m_d}{2} \approx 3.5 \text{MeV}$

typical values of $\mu, \nu, ..., T, ... \sim 10-100s$ MeV, for example, 200-400 MeV

One can work in the chiral limit $m_f \to 0$

- ▶ physical m_f a few MeV \rightarrow physical $m_\pi \sim 140$ MeV

In the chiral limit $m_f = 0$ the Duality \mathcal{D} is exact

Duality between CSB and PC is approximate in physical

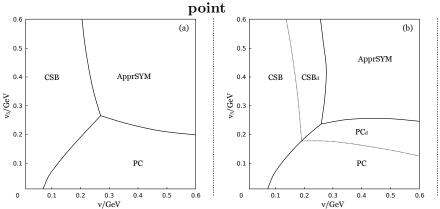


Figure: (ν, ν_5) phase diagram

Dualities on the lattice

 $(\mu_B, \mu_I, \mu_{I5}, \mu_5)$

 $\mu_B \neq 0$ impossible on lattice but if $\mu_B = 0$

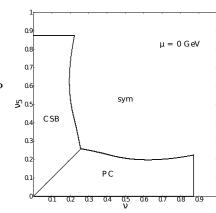
$$\mu_B \neq 0$$
 impossible on lattice but if $\mu_B = 0$

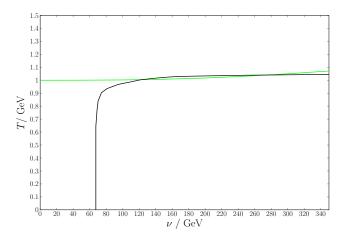
▶ QCD at μ_5 — (μ_5, T)

V. Braguta, A. Kotov et al, ITEP lattice group

▶ QCD at μ_I — (μ_I, T)

G. Endrodi, B. Brandt et al, Emmy Noether junior research group, Goethe-University Frankfurt, Institute for Theoretical Physics ()





 T_c^M as a function of μ_5 (green line) and $T_c^{\pi}(\nu)$ (black)

Uses of Dualities

How (if at all) it can be used

A number of papers predicted **anticatalysis** (T_c decrease with μ_5) of dynamical chiral symmetry breaking

A number of papers predicted **catalysis** (T_c increase with μ_5) of dynamical chiral symmetry breaking

lattice results show the **catalysis**(ITEP lattice group, V. Braguta, A. Kotov, et al)
But unphysically large pion mass

Duality \Rightarrow catalysis of chiral symmetry beaking

▶ Large N_c orbifold equivalences connect gauge theories with different gauge groups and matter content in the large N_c limit.

M. Hanada and N. Yamamoto, JHEP 1202 (2012) 138, PoS LATTICE 2011 (2011)

Duality

QCD at $\mu_1 \longleftrightarrow QCD$ at μ_2

- ▶ QCD with μ_2 sign problem free,
- ▶ QCD with μ_1 —- sign problem (no lattice)

Investigations of (QCD with μ_2)_{on lattice} \Longrightarrow (QCD with μ_1)

Inhomogeneous phases (case)

Homogeneous case

In vacuum the quantities $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ do not depend on space coordinate x.

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_{\pm}(x) \rangle = \pi, \quad \langle \pi_3(x) \rangle = 0.$$

In a dense medium $\langle \sigma(x) \rangle$ and $\langle \pi_a(x) \rangle$ might depend on spatial coordinates

CDW ansatz for CSB, the single-plane-wave LOFF ansatz for PC

$$\langle \sigma(x) \rangle = M \cos(2kx^1), \quad \langle \pi_3(x) \rangle = M \sin(2kx^1),$$

 $\langle \pi_1(x) \rangle = \pi \cos(2k'x^1), \quad \langle \pi_2(x) \rangle = \pi \sin(2k'x^1)$

Duality

Duality in inhomogeneous case is shown

$$\mathcal{D}_I: M \longleftrightarrow \pi, \quad \nu \longleftrightarrow \nu_5, \quad k \longleftrightarrow k'$$

- \blacktriangleright exchange axis ν to the axis ν_5 ,
- ▶ rename the phases ICSB \leftrightarrow ICPC, CSB \leftrightarrow CPC, and NQM phase stays intact here

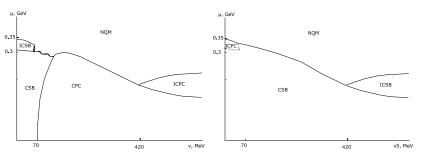


Figure: (ν, μ) -phase diagram.

M. Buballa, S. Carignano, J. Wambach, D.

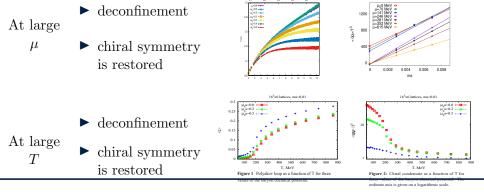
Nowakovski, Lianyi He et al.

Figure: (ν_5, μ) -phase diagram

Two colour QCD case $\mathbf{QC}_2\mathbf{D}$

There are similar transitions:

- ► confinement/deconfinement
- ► chiral symmetry breaking/restoration



A lot of quantities coincide up to few dozens percent

SU(2)

SU(3)

Critical temperature

Phys. Lett. B712 (2012) 279-283, JHEP 02 (2005) 033

$$T_c/\sqrt{\sigma} = 0.7092(36)$$

$$T_c/\sqrt{\sigma} = 0.6462(30)$$

Topological susceptibility

Nucl.Phys.B 715 (2005) 461-482

$$\chi^{\frac{1}{4}}/\sqrt{\sigma}=0.3928(40)$$

$$\chi^{\frac{1}{4}}/\sqrt{\sigma}=0.4001(35)$$

Shear viscosity

JHEP 1509 (2015) 082, Phys. Rev. D 76 (2007) 101701

$$\eta/s = 0.134(57)$$

$$\eta/s = 0.102(56)$$

Instead of chiral symmetry

$$SU_L(2) \times SU_R(2)$$

one has Pauli-Gursey flavor symmetry

Two colour NJL model

$$L = \bar{q} \Big[i\hat{\partial} - m_0 \Big] q + H \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 + (\bar{q}i\gamma^5 \sigma_2 \tau_2 q^c) (\bar{q}^c i\gamma^5 \sigma_2 \tau_2 q) \Big]$$

$$L = \bar{q} \Big[i\hat{\partial} - m_0 \Big] q + H \Big[(\bar{q}q)^2 + (\bar{q}i\gamma^5 \vec{\tau}q)^2 + (\bar{q}i\gamma^5 \sigma_2 \tau_2 q^c) (\bar{q}^c i\gamma^5 \sigma_2 \tau_2 q) \Big]$$

If you use Habbard-Stratanovich technique and auxiliary fileds

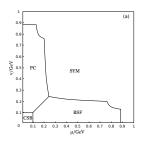
$$\sigma(x) = -2H(\bar{q}q), \ \vec{\pi}(x) = -2H(\bar{q}i\gamma^5 \vec{\tau}q)$$

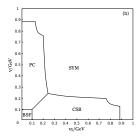
$$\Delta(x) = -2H\left[\bar{q}^c i\gamma^5 \sigma_2 \tau_2 q\right] = -2H\left[q^T C i\gamma^5 \sigma_2 \tau_2 q\right]$$

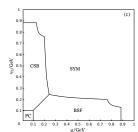
$$\Delta^*(x) = -2H\left[\bar{q}i\gamma^5 \sigma_2 \tau_2 q^c\right] = -2H\left[\bar{q}i\gamma^5 \sigma_2 \tau_2 C \bar{q}^T\right]$$

Condensates are

$$\langle \sigma(x) \rangle = M, \quad \langle \pi_1(x) \rangle = \pi_1, \quad \langle \Delta(x) \rangle = \Delta, \quad \langle \Delta^*(x) \rangle = \Delta^*.$$







(a)
$$\mathcal{D}_1: \quad \mu \longleftrightarrow \nu, \quad \pi_1 \longleftrightarrow |\Delta|$$

(b)
$$\mathcal{D}_3: \quad \nu \longleftrightarrow \nu_5, \quad M \longleftrightarrow \pi_1$$

(c)
$$\mathcal{D}_2: \quad \mu \longleftrightarrow \nu_5, \quad M \longleftrightarrow |\Delta|$$

▶ Based on the **duality** one can show that there is **no mixed phase**, i.e. two non-zero condensates simultaneously.

This greatly simplifies the numeric calculations.

▶ Phase diagram is **highly symmetric** due to **dualities**

The whole phase diagram, including diquark condensation, in two color case can be obtained from the results of three color case without any diquark condensation.

Dualities \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 were found in

- In the framework of NJL model

- In the large N_c approximation (or mean field)

$$\mathcal{D}_3: \quad \psi_R \to i\tau_1 \psi_R$$

$$\mu_I \leftrightarrow \mu_{I5}$$

$$\bar{\psi}\psi \leftrightarrow i\bar{\psi}\gamma^5\tau_1\psi$$

 $M \longleftrightarrow \Delta$, $\nu \longleftrightarrow \nu_5$, $\mu_I \longleftrightarrow \mu_{I5}$

$$i\bar{\psi}^{C}\sigma_{2}\tau_{2}\gamma^{5}\psi \leftrightarrow i\bar{\psi}^{C}\sigma_{2}\tau_{2}\gamma^{5}\psi, \quad \bar{\psi}^{C}\sigma_{2}\tau_{2}\psi \leftrightarrow \bar{\psi}^{C}\sigma_{2}\tau_{2}\psi$$

$$\bar{\psi}\tau_{2}\psi \leftrightarrow \bar{\psi}\tau_{3}\psi, \quad \bar{\psi}\tau_{1}\psi \leftrightarrow i\bar{\psi}\gamma^{5}\psi, \quad i\bar{\psi}\gamma^{5}\tau_{2}\psi \leftrightarrow i\bar{\psi}\gamma^{5}\tau_{3}\psi$$

There is also \mathcal{D}_1 and \mathcal{D}_2

Dualities were found in

- In the framework of NJL model non-pertubartively (or beyond mean field)

- In QC₂D non-pertubartively (at the level of Lagrangian)

QCD Lagrangian is

$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi + \bar{\psi}\left[\mu\gamma^{0} + \frac{\mu_{I}}{2}\tau_{3}\gamma^{0} + \frac{\mu_{I5}}{2}\tau_{3}\gamma^{0}\gamma^{5} + \mu_{5}\gamma^{0}\gamma^{5}\right]\psi$$

$$\mathcal{D}: \quad \psi_R \to i\tau_1 \psi_R$$
$$\mu_I \leftrightarrow \mu_{I5}$$

$$\bar{\psi}\psi \leftrightarrow i\bar{\psi}\gamma^5\tau_1\psi$$

$$M \longleftrightarrow \Delta, \qquad \qquad \nu \longleftrightarrow \nu_5, \quad \mu_I \longleftrightarrow \mu_{I5}$$

$$i\bar{\psi}^{C}\sigma_{2}\tau_{2}\gamma^{5}\psi \leftrightarrow i\bar{\psi}^{C}\sigma_{2}\tau_{2}\gamma^{5}\psi, \quad \bar{\psi}^{C}\sigma_{2}\tau_{2}\psi \leftrightarrow \bar{\psi}^{C}\sigma_{2}\tau_{2}\psi$$
$$\bar{\psi}\tau_{2}\psi \leftrightarrow \bar{\psi}\tau_{3}\psi, \quad \bar{\psi}\tau_{1}\psi \leftrightarrow i\bar{\psi}\gamma^{5}\psi, \quad i\bar{\psi}\gamma^{5}\tau_{2}\psi \leftrightarrow i\bar{\psi}\gamma^{5}\tau_{3}\psi$$

Duality was found in

▶ In the framework of NJL model non-pertubartively (beyond mean field or at all orders of N_c approximation)

► In QCD non-pertubartively (at the level of Lagrangian)

$$\mathcal{D} \in SU_R(2) \in SU_L(2) \times SU_R(2)$$

$$\mu_I \leftrightarrow \mu_{I5}$$

 $M \neq 0$ breaks the chiral symmetry

Duality \mathcal{D} is a remnant of chiral symmetry

Other Dualities

They are not that strong but still...

They could still be usefull

Dualities 45

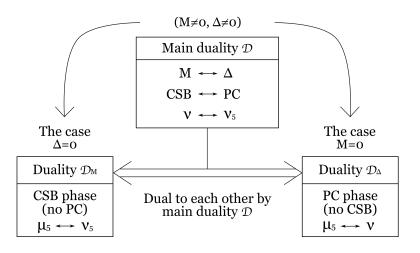


Figure: Dualities

- $(\mu_B, \mu_I, \nu_5, \mu_5)$ phase diagram was studied PC in dense matter with chiral imbalance also in dense electic neutral matter in β -equilibrium
- ► It was shown that there exist dualities in QCD and QC₂D

 Richer structure of Dualities in the two colour case
- ► There have been shown ideas how dualities can be used

 Duality is not just entertaining mathematical property but
 an instrument with very high predictivity power
- ▶ Dualities have been shown non-perturbetively in the two colour case
- ▶ Duality have been shown non-perturbarively in QCD