

CHARGED HADRON PRODUCTION IN Cu+Au COLLISIONS

<u>D.Larionova</u>, Yu.Mitrankov, A.Ya.Berdnikov, Ya.A.Berdnikov, D.Kotov,

Peter the Great Saint-Petersburg Polytechnic University

Quark-Gluon Plasma

QGP – is a state of matter which exists at extremely high temperature and/or density. This state is thought to consist of asymptotically free strong-interacting quarks and gluons, which are ordinarily confined inside atomic nuclei or other hadrons.

Heavy-ion collision evolution

Hadronization of the QGP medium at the Chemical freezeout temperature

- Transition from a deconfined medium composed of quarks, antiquarks and gluons to color-neutral hadronic matter
- The partonic degrees of freedom of the deconfined phase convert into hadrons, in which partons are confined

No first-principle description of hadron formation

Non-perturbative problem, not calculable with QCD

Motivation (1/3)

Measurments of light meson (φ, K*, π, η, Ks, ω) production.
 Study the QGP properties depending on the number and flavor of quarks.

Motivation (2/3)

✓ Baryon Puzzle - Anomalous large ratio of protons (3 quarks) to π-mesons (2 quarks) yields in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV discovered by PHENIX

Chujo T et al., Nucl.Phys. A715 (2003) 151-160

Adare A et al., Physical Review C 88:024906

Motivation (3/3)

Baryon puzzle in asymmetric Cu+Au system?

Hadronization

Recombination

Phase space at the hadronization is filled with partons

- Single parton description may not be valid anymore
- > No need to create $\bar{q}q$ pairs via splitting/string breaking
- Partons that are "close" to each other in phase space (position and momentum) can simply recombine into hadrons

Recombination vs. fragmentation:

- Competing mechanisms
- > Recombination naturally enhances baryon/meson ratios at intermediate p_T

Greco et al., PRL 90 (2003) 202302 Fries et al., PRL 90 (2003) 202303 Hwa, Yang, PRC 67 (2003) 034902

(Pioneering High Energy Nuclear Interaction eXperiment)

Detectors in the central spectrometer arms ($|\eta| < 0.35$) Charged Particle Tracking & Momentum measurements: Drift-Chambers (DC) Identification of charged hadrons: ≻Tine-of-Flight (TOF) with start signal from the Beam-Counters (BBC) Centrality identification:

BBC detectors (beam-beam counters)

Centrality characterized by N_{part}: Number of nucleons which suffered at least one inelastic nucleon-nucleon collision N_{coll}: Number of inelastic nucleon-nucleon collisions

> N_{part} and N_{coll} from Glauber calculations

$$\frac{1}{2\pi p_T}\frac{d^2N}{dp_Tdy} = \frac{N_p}{2\pi p_T N_{evt}\varepsilon_{rec}\Delta p_T\Delta y}$$

- N_{evt} is the number of events in a given centrality and p_T
- ε_{rec} is the efficiency of the protons identification
- N_p is the protons raw yield measured in the given centrality and p_T

PH^{*}ENIX

Invariant p_T spectra of π^{\pm} and K^{\pm} in Cu+Au, $\sqrt{s_{NN}} = 200$ GeV

$R_{AB} \text{ of } (p + \overline{p})/2 \text{ in Cu+Au},$ $\sqrt{s_{NN}} = 200 \text{ GeV}$

£1.8 م (p+p)/2 (p+p)/2 Npart=70.4 0-80% Cu+Au N_{narl}=154.8 0-20% Cu+Au 1.6 \succ Results at same N_{part} are in quite Npart=61.6 40-60% Au+A Npart=141.5 20-40% Au+Au √s_{NN} = 200 GeV 1.4 √s_{NN} = 200 GeV good agreement. |y|<0.35 |y|<0.35 1.2 Protons show centrality dependent 0.8 Cronin-like enhancement 0.6 **PH**^{*}ENIX **PH***ENIX 0.4 preliminary preliminary 0.2 e⁷ 1.8 (p+p)/2 (p+p)/2 $(\overline{p}+p)/2$ N_{part}=80.4 20-40% Cu+Au N_{part}=34.9 40-60% Cu+Au N_{part}=11.5 60-80% Cu+Au 1.6 ▲ N_{part}=14.7 60-92% Au+Au ▲ N_{nart}=61.6 40-60% Au+Au A Npart=14.7 60-92% Au+Au √s_{NN} = 200 GeV (s_{NN} = 200 GeV (s_{NN} = 200 GeV 1.4 |y|<0.35 |y|<0.35 |y|<0.35 1.2 0.8 0.6 **PH**^{*}ENIX **PH**^{*}ENIX **PH**^{*}ENIX 0.4 preliminary preliminary preliminary 0.2 4 p_(GeV/c) 0.5 0.5 1.5 2 2.5 3 3.5 4 p_(GeV/c) 0.5 1.5 2 2.5 3 3.5 1.5 2 2.5 3 3.5 1 1 1 p_(GeV/c)

17.10.2020

POLYTECH

\overline{p}/p ratio in Cu+Au, $\sqrt{s_{NN}} = 200$ GeV PH*ENIX

Results at same N_{part} seem to be in a good agreement within systematic uncertainties. |y|<0.35 √s_{NN} = 200 GeV p/p |y|<0.35 √s_{NN} = 200 GeV Nort=70.4 0-80% Cu+Au N_{part}=154.8 0-20% Cu+Au N_{part}=141.5 20-40% Au+Au \succ It can be concluded that the \bar{p}/p ratios are N_{part}=61.6 40-60% Au+Au almost independent of centrality within the current systematic and statistical errors $ightarrow \bar{p}/p < 1$, which might be a sign of matterantimatter asymmetry **PH**^{*}ENIX **PH**^{*}ENIX Tawfik A., Nucl. Phys. A 859 (2011) 63-72 preliminary preliminary Ratic p/p |y|<0.35 √s_{NN} = 200 GeV |y|<0.35 √s_{NN} = 200 GeV p/p |y|<0.35 \scale{s_NN} = 200 GeV N_{part}=80.4 20-40% Cu+Au N_{nart}=34.9 40-60% Cu+Au N_{part}=11.5 60-80% Cu+Au A Npart=61.6 40-60% Au+Au N_{part}=14.7 60-92% Au+Au ▲ N_{part}=14.7 60-92% Au+Au 1.4 1.2 0.8 0.6 **PH**^{*}ENIX **PH**^{*}ENIX **PH**^{*}ENIX 0.4 preliminary preliminary preliminary 0.2 0.5 1.5 2 2.5 3 3.5 0.5 3 3.5 0.5 1.5 4 p_(GeV/c) 1 1.5 2 2.5 4 p_(GeV/c) 1 2 2.5 3 3.5 1 p_(GeV/c)

Observed patterns might indicate:

Baryon Puzzle

 $R^{\varphi}_{AB} < R^{p}_{AB}$, $m_{\varphi} \approx m_{p}$

This strongly suggests a baryon vs. meson dynamic, as opposed to a simple mass dependence

$$\blacktriangleright R_{AB}^{K^*} \approx R_{AB}^K$$

$$\succ R_{AB}^{\pi^0} \approx R_{AB}^{\pi^{\pm}} \approx R_{AB}^{\eta}$$

Strangeness enhancement

Observed patterns might indicate:

Baryon Puzzle

 $R^{\varphi}_{AB} < R^{p}_{AB}$, $m_{\varphi} \approx m_{p}$

This strongly suggests a baryon vs. meson dynamic, as opposed to a simple mass dependence

$$\succ R_{AB}^{K^*} \approx R_{AB}^K$$

$$\succ R_{AB}^{\pi^0} \approx R_{AB}^{\pi^{\pm}} \approx R_{AB}^{\eta}$$

Strangeness enhancement

Observed patterns might indicate:

Baryon Puzzle

 $R^{\varphi}_{AB} < R^{p}_{AB}$, $m_{\varphi} \approx m_{p}$

This strongly suggests a baryon vs. meson dynamic, as opposed to a simple mass dependence

$$\sim R_{AB}^{K^*} \approx R_{AB}^K$$

$$\succ R_{AB}^{\pi^0} \approx R_{AB}^{\pi^{\pm}} \approx R_{AE}^{\eta}$$

Strangeness enhancement

Observed patterns might indicate:

Baryon Puzzle

 $R^{\varphi}_{AB} < R^{p}_{AB}$, $m_{\varphi} \approx m_{p}$

This strongly suggests a baryon vs. meson dynamic, as opposed to a simple mass dependence

$$\sim R_{AB}^{K^*} \approx R_{AB}^K$$

$$\succ R_{AB}^{\pi^0} \approx R_{AB}^{\pi^{\pm}} \approx R_{AB}^{\eta}$$

Strangeness enhancement

Observed patterns might indicate:

Baryon Puzzle

 $R^{\varphi}_{AB} < R^{p}_{AB}$, $m_{\varphi} \approx m_{p}$

This strongly suggests a baryon vs. meson dynamic, as opposed to a simple mass dependence

$$\sim R_{AB}^{K^*} \approx R_{AB}^K$$

$$\succ R_{AB}^{\pi^0} \approx R_{AB}^{\pi^{\pm}} \approx R_{AB}^{\eta}$$

Strangeness enhancement

PH^{*} ENIX

Observed patterns might indicate:

Baryon Puzzle

 $R^{\varphi}_{AB} < R^{p}_{AB}$, $m_{\varphi} \approx m_{p}$

This strongly suggests a baryon vs. meson dynamic, as opposed to a simple mass dependence

$$R_{AB}^{K^*} \approx R_{AB}^{K}$$

$$R_{AB}^{\pi^0} \approx R_{AB}^{\pi^{\pm}} \approx R_{AB}^{\eta} \approx R_{AB}^{\omega}$$

$$Strangeness enhancement$$

PH^{*}ENIX

 $\langle {\sf R}_{\sf AB} \rangle$

1.8

1.6

1.4⊢

0.8

0.6

0.4

0.2^C

No dependence on collision geometry

K^+/π^+ ratios in Cu+Au, $\sqrt{s_{NN}} = 200 \text{ GeV}$

Conclusion

- > Production and suppression of the $(p + \bar{p})/2$ seems to scale with the average size of the nuclear overlap region and do not depend on the details of its shape;
- ▷ For the most central Cu+Au collisions proton yields are enhanced ($R_{AB} > 1$) at 2 GeV/c < p_T < 5 GeV/c, while π^0 -mesons yields are suppressed and φ –meson R_{AB} values are around 1. Observed difference in R_{AB} values for protons, φ and π^0 -mesons disappears from central to peripheral collisions.
- The observation of these patterns in many collision systems can provide further constraints to quark recombination models.

Thank you for attention!