THE NEUTRAL PION RADIATIVE WIDTH MEASUREMENT: RESULTS FROM PRIMEX (Jefferson Lab)

I. Larin, V.V. Tarasov

ITEP (Moscow), University of Massachusetts Amherst,

On behalf of the PrimEx collaboration

Outline

- Physics motivation
- Experimental methods
- The PrimEx experiment
- PrimEx results

QCD predictions for $\Gamma(\pi^0 \rightarrow \gamma \gamma)$

- $\pi^0 \rightarrow \gamma \gamma$ proceeds primarily via chiral anomaly
- Chiral anomaly predicts exact value for decay width at the leading order and massless quarks:

$$\Gamma(\pi^0 \to \gamma\gamma) = \frac{\alpha^2 N_C^2 m_{\pi^0}^3}{576\pi^3 F_{\pi^0}^2} = 7.725 \pm 0.044 \ eV$$

- Next to the leading order corrections have been calculated taking into account different quark masses and mixing effects with percent level precision:
 - J.Goity et al.: 8.1eV±1.0%
 - K.Kampf, B.Moussalam: 8.09±1.4%
 - B.Ananthanarayan et al.: 8.06±1.0%
 - B.Ioffe, A.Oganesian (QCD sum rules): 7.93±1.5%

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$: experimental methods and measurements: Direct measurement

- Limited by unknown π^0 momentum spectrum
- No need to know production mechanism and cross section
- Measurements:
 - CERN (1984) $\Gamma(\pi^0 \to \gamma \gamma) = 7.25 \text{eV} \pm 3.1\%$

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$: experimental methods and measurements: production in e⁺e⁻ collisions

• "Photoproduction" on virtual $\gamma^*\gamma^*$ in e^+e^- collisions

- No need to separate coulomb and strong production
- Photoproduction cross section needs to be extracted
- Limited by the luminosity of crossing beams accuracy
- Measurements:
 - CBAL (1988) $\Gamma(\pi^0 \to \gamma \gamma) = 7.75 \text{eV} \pm 6.4\%$

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$: experimental methods and measurements: π^+ radiative decay measurement

- Γ(π⁰→ γγ) can be calculated from π⁺→ evγ radiative decay parameters
- $\pi^+ \rightarrow ev\gamma$ decay in rest analysis
- $\Gamma(\pi^0 \to \gamma \gamma)$ extracted from vector form factor $F_V(0)$: $\Gamma(\pi^0 \to \gamma \gamma^*) = \frac{\alpha^2 \pi m_{\pi^0}}{2} |F_V(0)|^2$
- Measurements:

• PIBETA (2009)
$$\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.65 \text{eV} \pm 13\%$$

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$: Primakoff method

• π^0 photoproduction in nucleus coulomb field

- Coulomb part of photoproduction cross section needs to be extracted: $\left(\frac{d\sigma}{d\Omega}\right)_{Pr} = \frac{\Gamma_{\gamma\gamma}}{m_{\pi}^3} \frac{8\alpha Z^2}{Q^4} \frac{\beta^3 E^4}{Q^4} |F_{em}(Q)|^2 \sin^2 \theta_{\pi}\right)$
- Challenge: separate Coulomb and Strong photoproduction
- Most recent measurement preceding PrimEx:
 - Cornell (1974) $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.92 \text{eV} \pm 5.3\%$

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$ status: theory calculations and previous measurements

Measurement	Method	Result [eV]
PIBETA, 2009	π^+ decay	7.65 ± 1.0
CERN, 1984	Direct	7.25 ± 0.22
CBAL, 1988	Collider	7.75 ± 0.6
Cornell, 1974	Primakoff	7.92 ± 0.42
PDG average	SF=2.6	7.74 ± 0.43

PrimEx Milestones

- 1999: Proposal approved by PAC15
- 2000: NSF awarded MRI \$1M grant to develop experimental setup
- 2002: Reapproved by PAC22 (E02-103) with A rating
- 2004: PrimEx-I Installation, Commissioning and Data taking (22 days)
- 2007: PrimEx-I Preliminary result released at APS meeting
- 2007: PrimEx-II proposal approved by PAC33
- 2009: PrimEx-I Final result reported
- 2010: PrimEx-II Detector upgrade and Data taking (28 days)
- 2011: PrimEx-I result published (PRL 2011, Vol 106, P. 162303)
- 2018: PrimEx-II Final result approved by the PrimEx Collaboration
- **2020: Combined PrimEx-I and -II result published** (*Science* 05/2020: Vol. 368, Issue 6490, pp. 506-509)

PrimEx Setup

- Tagging facility:
 - Precise photon beam flux control
 - High resolution beam energy and time
- Hybrid EM calorimeter:
 - Excellent energy, spatial and time resolution
 - Large geometrical acceptance
- Pair spectrometer for additional flux monitoring
- Ability to control apparatus systematics by QED processes

PrimEx Electromagnetic Calorimeter

- Combination of PbWO₄ and Pb-glass detectors (118x118 cm²) :
 - PbWO₄ crystals in the center 34x34 matrix of 2.05x2.05x18 cm³ PbWO₄ blocks with 2x2 hole for beam
 - Lead glass out part saves on budget 576 lead-glass blocks of 3.82x3.82x45.0 cm³
 - 7.0...7.3m distance from target
- Hybrid EM calorimeter:
 - Excellent energy, spatial and time resolution: $\sigma_E / E \sim 2.6\% / \sqrt{E}$; $\sigma_x / E \sim 2.6 \text{ mm} / \sqrt{E}$
 - Large geometrical acceptance

PrimEx upgrade for the 2^{nd} run $\hat{\Box}$

- PrimEx-II used 8% r.l. Carbon and new 10% r.l. Silicon targets:
 - PrimEx-II successfully collected twice more statistics on Carbon compare to PrimEx-I and about 5 times more statistics on Silicon compare to PrimEx-I Carbon
 - Higher Z target (but not too high Z: still good control of the strong production part)
- Tagger energy range has been increased by factor of ~1.5
- Central part of HyCal was upgraded with individual TDC modules:
 - out of time clusters were rejected
 - HyCal time resolution improved from 1.7ns to 0.9ns
- Upgraded DAQ electronics
- Trigger from HyCal signal w/o tagger coincidence
 - Better accidentals study
- New calorimeter reconstruction algorithm has been implemented
- HyCal moved closer to the target: 7.0m vs 7.3m
 - larger acceptance for the incoherent production region allows separating it better

PrimEx I and II data chart

PrimEx-I

PrimEx run	Target	Thickness [% r.l.]	Beam flux [×10 ¹²]	Beam energy [GeV]
Ι	¹² C	5	1.4	4.95.5
Ι	²⁰⁸ Pb	5	0.72	4.95.5
II	^{12}C	8	2.0	4.45.3
II	²⁸ Si	10	5.3	4.45.3

$\pi^0 \rightarrow \gamma \gamma$ event selection

Elastic π^0 yield extraction

• Hybrid mass analysis: analyze rotated axes projection

• Constraint mass analysis: correct energies reported by the calorimeter so they give exactly the beam energy

Fit to extract $\Gamma(\pi^0 \rightarrow \gamma \gamma)$

PrimEx-II π^0 yield fit, Silicon target

PrimEx-II π^0 yield fit, Carbon target

Differential cross section vs production angle

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$ systematic uncertainty item: Strong nucleus radius vs Electromagnetic radius

Fit χ^2 /Ndof dependence vs strong radius change, [%]

Change the radius to minimize χ^2 :

- Si: $\Delta R = -0.3\% \pm 0.6\%$ (stat.)
- C: $\Delta R = -1.4\% \pm 1.8\%$ (stat.)

Statistical uncertainty of this procedure is going directly to the systematics:

- Si: $\delta\Gamma(\Delta R \text{ syst.}) = 0.24\%$
- C: $\delta\Gamma(\Delta R \text{ syst.}) = 0.52\%$

"Second step" contribution ("shadowing" effect)

Real photons at high energies are shadowed in nuclei. In case of pion photo-production it's resulting from two step process: initial photon produces vector (mostly ρ) meson, which produces pseudoscalar meson on nucleon (ω contribution is additionally suppressed by opposite sign of amplitudes on protons and neutrons). This gives an additional term for the strong amplitude mostly originating from the intermediate ρ channel

$$T_{st}(q) = \left(\vec{h} \cdot \vec{q}\right) \varphi(0) \left(F_{st} - \xi F_{I}\right) \qquad \vec{h} = \left[\vec{k} \times \vec{\epsilon}\right]/k$$

parameter ξ can be expressed via elastic amplitude ratio:

$$\xi = \frac{f(\gamma N \to \rho N)f(\rho N \to \pi N)}{f(\rho N \to \rho N)f(\gamma N \to \pi N)}$$

and is within range between 0 (no shadowing) and 1 (VDM) $\xi = 0.25$ value has been used in analysis*

$\Gamma(\pi^0 \rightarrow \gamma \gamma)$ systematic uncertainty item: Shadowing parameter ξ

Strong FF and shadowing

Data fit $\chi 2$ vs shadowing parameter

* W. Meyer et al., Phys. Rev. Lett. 28, 1344 (1972); A. M. Boyarski et al., Phys. Rev. Lett. 23, 1343 (1969)

The value of $\xi = 0.25^*$

used in the analysis is

in agreement with the

value giving the best

fit χ^2 : ξ =0.30±0.17

πN cross section Shadowing effect amplitude Nuclear coherent parameterization Incoherent model Non-zero spin admixture Nuclear strong vs EM radius Total	0.1% 0.31% 0.08% 0.08% <0.1% 0.24% 0.42%	PrimEx-II $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ systematic breakdown for ²⁸ Si Slope Width Total Absolute tagging ratio Electron counting	0.14% 0.05% 0.09% 0.08% 0.18% 0.37% 0.55%
Background shape Fitting range Empty target subtraction	0.4% 0.4% 0.2%	Photon Beam Beam Beam	0.18% 0.4% 0.80%
Fit parameter uncertainty Signal accounting Omega/rho background subtraction Bin migration at zero angle	0.5% 0.55% 0.09% 0.2%	$\pi^{0} \text{ yield} \qquad Flux \qquad Density \\ \text{Thickness} \\ \text{Purity} \\ \text{Total} \\ \end{array}$	0.35% 0.03% <0.01% 0.35%
dN/dθ binning 0.01°, 0.02°, 0.03° Extraction from MC test Total	0.12% 0.2% 0.93%	Monte Trigger efficiency ADC errors Dead channels Total	<0.1% <0.1% <0.1%
π^0 angular resolution π^0 two gamma decay branching Calorimeter geometry Calorimeter energy response Limited statistics Total	0.24% 0.23% 0.034% 0.05% 0.45% 0.02% 0.58%	Carlo Gamma energy cut Pion energy cut Time window Wrong beam candidate Total	0.05% <0.1% 0.05% 0.10% 0.18%

PrimEx I vs PrimEx-II $\Gamma(\pi^0 \rightarrow \gamma \gamma)$ uncertainty

ltem	PrimEx-I	PrimEx-II	_
Beam parameters	0.4%	0.3%	
Photon flux	1.0%	0.8%	Better beam quality
Target	0.3%	0.3%	
DAQ	0.1%	0.1%	
Event selection*	0.5%	0.2%	
Monte-Carlo simulation*	0.6%	0.6%	Statistically driven systematics (improved statistics)
Yield extraction*	1.6%	0.8%	
Photoproduction theory parameters*	0.6%	0.4%	
Systematics	2.1%	1.4%	
Statistical	1.8%	0.7%	
Total	2.8%	1.6%	
* (partly) correlated it	ems		-

Verification with Compton cross section

PrimEx I vs PrimEx II result

Run	Target	Г(π⁰→үү) <i>,</i> eV
PrimEx-I	¹² C	7.79±0.24
PrimEx-I	²⁰⁸ Pb	7.85±0.28
PrimEx-II	²⁸ Si	7.81±0.13
PrimEx-II	¹² C	7.76±0.17

PrimEx result changed PDG landscape on $\Gamma(\pi^0 \rightarrow \gamma\gamma)$ part

$\Gamma(\eta \rightarrow \gamma \gamma)$ Experiment @ 12 GeV

- 1. New Primakoff $\Gamma(\eta \rightarrow \gamma \gamma)$ measurement with a precision of 3.2%: potentially resolve discrepancy between collider and Primakoff measurements
- 2. Improve η - η ' mixing angle
- 3. Determine light quark mass ratio in the most model independent way

$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$
, where $\hat{m} = \frac{1}{2}(m_u + m_d)$

Measurement of $\Gamma(\eta \rightarrow \gamma \gamma)$ in Hall D at 12 GeV with the GlueX detector setup

10/16/2020

Target choice for the $\Gamma(\eta \rightarrow \gamma \gamma)$ Primakoff Experiment

Precision Primakoff measurement requires low A targets to control contributions from nuclear processes. High A targets may have higher systematics related to the in-medium interactions

Hydrogen target:

- inelastic hadronic contribution and FSI suppressed
- Good separation between Primakoff and strong production

Helium target:

- Higher Primakoff cross section
- Compact nucleus
- New theoretical developments for FSI
 - (S. Gevorgyan et al., Phys. Rev. C 80, 2009)

LH and LHe targets

- have well know form factors
- Require target walls subtraction

$\Gamma(\eta \rightarrow \gamma \gamma)$ Beam Time, Statistics, and Projected Uncertainties

- Targets: 3.46% r.l. LH₂, 3.99% r.l. LHe4
- Photon flux: $\sim 7 \times 10^6 \text{ y/s} (\text{E}\gamma > 10 \text{ GeV})$
- About half of statistics has been collected during 2019 run (we are analyzing the data); the second half is planned to be collected during summer 2021

Beam time request (~1% stat. error)

LH2 target run	40 days
LHe4 target run	30 days
Empty target run	6 days
Tagger efficiency, TAC runs	4 days
Setup calibration and checkout	8 days
Total	88 days

$\Gamma(\eta \rightarrow \gamma \gamma)$ estimated uncertainties

Uncertainty item	Contribution [%]
Photon flux	1.0
Target	0.5
Yield extraction	2.6
Acceptance	0.5
Beam energy	0.2
Detection efficiency	0.5
Branching ratio (PDG)	0.5
Total Systematic	3.0
Statistical error	1.0
Total error	3.2

Summary

• The PrimEx collaboration performed two new generation Primakoff experiments: PrimEx-I physics result: $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.82 eV \pm 0.14 eV$ stat. $\pm 0.17 eV$ syst.; $\pm 0.22 eV(2.8\%)$ total PrimEx-II physics result: $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.798 eV \pm 0.056 eV$ stat. $\pm 0.109 eV$ syst.; $\pm 0.122 eV(1.6\%)$ total PrimEx combined result (Science 05/2020: V.368, p.506) :

 $\Gamma(\pi^0 \to \gamma \gamma) = 7.802 eV \pm 0.052 eV \text{ stat.} \pm 0.105 eV \text{ syst.}; \pm 0.117 eV(1.5\%) \text{ total}$

The PrimEx project was supported in part by the NSF MRI grant (PHY-0079840) and RFBR grant 18-02-00938

• The next generation Primakoff radiative width measurement experiment is currently in progress in Jefferson Lab: the part of statistics (about half) has been collected last year; and the remaining part is planned to be collected during summer 2021 run.