Methods for event plane determination in flow measurements with HADES at SIS18

Mikhail Mamaev (MEPhI)
Oleg Golosov (MEPhI)
Ilya Selyuzhenkov (GSI / MEPhI)

for the HADES Collaboration

Anisotropic flow & spectators

spatial asymmetry of the initial energy distribution transforms via interaction into anisotropic emission of produced particles

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$ho(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^{\infty}v_{n}\cos n(arphi-\Psi_{RP}))$$

directed flow:

$$|v_1 = \langle \cos{(arphi - \Psi_{RP})}
angle$$

v_n of protons, deuterons and tritons in Au+Au collisions with HADES

HADES Collaboration, arxiv:2005.12217

Goal of this presentation

- Test effect of azimuthal non-uniformity corrections on spectator plane resolution and v_n measurement
- Compare different methods of v_n measurements and resolution calculation:
 - Event plane & scalar product
 - Random subevent & extrapolation to full subevent
 - 3 subevents method
- Evaluate systematic uncertainties from spectator plane estimation

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in\Psi_n^{EP}}$$

 $\Psi_n^{\ EP}$ is the event plane angle

Flow methods for v_n calculation

Event plane (EP) method:

$$v_1=rac{\langle\cos{(\phi-\Psi_1^{EP})}
angle}{R_1}$$

Resolution correction from random subevent (RND):

$$R_1^{sub} = \sqrt{\langle \cos(\Psi_n^a - \Psi_n^b)
angle}$$

Extrapolation to full event plane is implemented following J.Y. Ollitrault [arXiv:nucl-ex/9711003]

Scalar product (SP) method:

$$v_1=rac{\langle u_1^aQ_1^a
angle}{R_1}$$

Where

$$R_1^a = rac{\sqrt{\langle Q_1^a Q_1^b
angle \langle Q_1^a Q_1^c
angle}}{\sqrt{\langle Q_1^b Q_1^c
angle}}$$

The HADES experiment

Tracking system $(0.09 < \eta < 1.84)$

- Multi-wire drift chambers (MDC)
- Magnet coil

Particle identification (0.09 < η < 1.84)

- Time Of Flight (TOF)
- Resistive Plate Chambers (RPC)

Event plane reconstruction

Forward Wall (FW)2.68 < η < 5.38

Q-vectors for protons and charged fragments

Protons with p_{τ} < 2 GeV/c

for 2 rapidity regions:

$$\circ$$
 Mb — y_{cm} [-0.55, -0.35]

Charged fragments from FW:

W1: $3.77 < \eta < 5.38$ W2: $3.28 < \eta < 3.88$

W3: 2.68 < n < 3.35

Full FW (sum over all modules) $2.68 < \eta < 5.38$ RND-sub: all modules randomly splitted into 2 groups

Rapidity coverage of different subevents

Azimuthal asymmetry of the HADES acceptance

Required corrections to reduce effects of non-uniform azimuthal acceptance

Corrections are based on method in:

I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

QnTools framework

Corrections are based on method in:

I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

Originally implemented as QnCorrections framework for ALICE experiment:

J. Onderwaater, I. Selyuzhenkov, V. Gonzalez

https://github.com/HeavyIonAnalysis/QnTools

See Lukas Kreis talk
"QnTools framework for flow analyses"
(Heidelberg Uni, ALICE Collaboration)

QnTools configuration

Q-vector	Q _n weight	Correction axes	Correction steps	Error calculation	Q _n Normalization
Protons	1	p _T [0.0, 2.00], 10 bins y _{cm} [-0.75, 0.75], 15 bins Centrality, 8 bins	Recentering Twist Rescaling	Bootstrapping, 100 samples	Sum of Weights
Charged Fragments	Module charge	Centrality, 8 bins	Recentering	100 samples	Outri of Weights

x&y Q_n-vector component correlations

$$\langle Q_n^a Q_n^b
angle = \langle X_n^a X_n^b
angle + \langle Y_n^a Y_n^b
angle$$

Expected for ideal detector:

$$\langle X_n^a X_n^b \rangle = \langle Y_n^a Y_n^b \rangle$$

$$\langle X_n^a Y_n^b
angle = 0$$

$$\langle Y_n^a X_n^b
angle = 0$$

Results for correlations of other Q-vectors pairs from MDC and FW vectors are in the backup

Small differences between x&y components. Cross correlations are consistent with zero.

Q-vector correlations: azimuthal non-uniformity corrections

Q-vector	Correction steps
Protons	Recentering Twist Rescaling
Charged Fragments	Recentering

Residual effects of detector non-uniformity are below 2% Average of x&y components is used for the further analysis

Non-flow correlations in the spectator plane resolution

Resolution of each sub-event can be calculated using different combinations of Q-vectors.

$$R_1^a = rac{\sqrt{\langle Q_1^a Q_1^b
angle \langle Q_1^a Q_1^c
angle}}{\sqrt{\langle Q_1^b Q_1^c
angle}}$$

Ideal case:
without non-flow correlations
different estimates are to be consistent

In reality:
Rapidity separation between sub-events
reduces "non-flow" (short range) correlations

Quantifying non-flow correlations in R₁

1. Rapidity-separated and unseparated combinations split on two branches

Resolution estimates with rapidity-separated subevents are consistent with each other within 3-5%.

Other combinations deviate by up to ~30% in central collisions

Quantifying non-flow correlations in R₁

1. Rapidity-separated and unseparated combinations split on two branches

2. Rapidity-separated combinations are consistent with each other

Resolution estimates with rapidity-separated subevents are consistent with each other within 3-5%.

Other combinations deviate by up to ~30% in central collisions

Quantifying non-flow correlations in R₁

1. Rapidity-separated and unseparated combinations split on two branches

2. Rapidity-separated combinations are consistent with each other

3. Combinations with no rapidity separation deviate from each other

Resolution estimates with rapidity-separated subevents are consistent with each other within 3-5%.

Other combinations deviate by up to ~30% in central collisions

Systematic uncertainty of directed flow

proton v_1 vs. centrality y_{cm} [-0.25; -0.15] p_T [0.0; 2.0] GeV/c

Rapidity separated only are shown

Results for event plane and scalar production (with rapidity separated subevents) are consistent within stat. uncertainties.

Systematic uncertainty of directed flow

proton v_1 vs. centrality y_{cm} [-0.25; -0.15] p_T [0.0; 2.0] GeV/c

v₁ results with resolution corrections extracted from rapidity separated combinations are consistent for all subevents

Summary of systematic uncertainty for v₁

proton v_1 vs. centrality y_{cm} [-0.25; -0.15] p_T [0.0; 2.0] GeV/c

Rapidity separated only are shown

Overall difference between v₁ with event plane (RND-sub) and scalar product (with rapidity separated combinations) is ~10% in central events and below 5% in mid-central

Summary

- Investigated systematic uncertainties in directed flow of protons measurement relatively to the spectators symmetry plane
- After applying corrections for azimuthal acceptance non-uniformity of the detector,
 the residual effects are found to be below 2%
- Implemented scalar product, 3-subevents technique for flow measurement
- From the comparison of event plane (random subevents) and scalar product (three subevents) methods
 the systematic uncertainties due to non-flow effects of spectator symmetry plane estimation was evaluated:~ 10% for proton v₁ in most central and < 5% in mid-central collisions
- The work is supported by
- the Ministry of Science and Higher Education of the Russian Federation, Project "Fundamental properties of elementary particles and cosmology" No 0723-2020-0041,
- the Russian Foundation for Basic Research (RFBR) funding within the research project no. 18-02-40086,
- the European Union's Horizon 2020 research and innovation program under grant agreement No. 871072,
- the National Research Nuclear University MEPhI in the framework of the Russian Academic Excellence Project (contract no. 02.a03.21.0005, 27.08.2013).

Backup

Data Selection

Data: Au+Au collisions at 1.23GeV (subsample of 10M events)

•	Minimum bias trigger

Event selection:

- vertex on Z: [-60;0] mm
- vertex on XY < 3 mm
- Good Vertex Cluster
- Good Vertex Candidate
- Good START
- No Pile Up in START
- Good START VETO
- Good START META
- No VETO

Proton selection

- DCA-z<15mm
- DCA-xy<15mm
- Standard HADES TOF selection

Charged fragment (FW modules) selection

- Wall Ring: 0-4:
 - wallHitCharge > 80
 - wallHitBeta [0.84, 1]
- Wall Ring: 5-6:
 - wallHitCharge > 85
 - wallHitBeta [0.85, 1]
- Wall Ring: 0-4:
 - wallHitCharge > 88
 - wallHitBeta [0.8, 1]

Centrality is determined with selected TOF+RPC hits Details: see talk by B.Kardan

"Centrality determination in HADES at SIS18: Glauber model approach"