

Maciej Słupecki on behalf of the ALICE Collaboration

LHC schedule

The LHC entered the Long Shutdown 2 (**LS2**) in 2019 → major implications for ALICE

- Increase in luminosity (number of collisions per s per cm²)
- Sustained pp operation at 25 ns bunch crossing time
- Minimum-bias **Pb-Pb** at the target interaction rate of **50 kHz**
 - in Run 1 and 2 it was < 1 kHz; downgraded from available 8 kHz

ALICE upgrades

Functionalities of FIT

- Luminosity monitoring & feedback to LHC
 - Essential for the operation of ALICE
- Fast Interaction Trigger
 - Online vertex determination
 - Minimum bias and centrality selection
 - Rejection of beam-gas events
 - Veto for ultraperipheral collisions
- Multiplicity → centrality and event plane
- Collision time for Time-Of-Flight particle ID
- Diffractive physics

FIT layout

FIT subdetectors

FT0

- ***** 2 **Cherenkov** arrays
 - \rightarrow with quartz radiators
- # low latency → LM trigger
- ★ time resolution < 20 ps
 </p>
- ** background rejection
 - → MB trigger, luminosity

FV₀

- ***** 5 **scintillator** rings, 8 sectors
- ****** low latency → LM trigger
- * time resolution ~ 250 ps
- * background monitoring
- # large area → multiplicity trigger

FDD

- 2 scintillator arrays,2 layers each
- ** very forward rapidity
 - → diffractive physics
- * background monitoring

FIT subdetectors

FT0

- ***** 2 Cherenkov arrays
 - → with quartz radiators
- ****** low latency → LM trigger
- ★ time resolution < 20 ps
 </p>
- ** background rejection
 - → MB trigger, luminosity

FV₀

- * 5 scintillator rings, 8 sectors
- ***** low latency → LM trigger
- * time resolution ~ 250 ps
- * background monitoring
- ★ large area → multiplicity trigger

FDD

- 2 scintillator arrays,2 layers each
- ** very forward rapidity
 - → diffractive physics
- background monitoring

**** Common custom-designed front-end electronics**

→ sustained pp operation at 25 ns bunch crossing, high dynamic range

*** Radiation hard**

- → FIT survives Run 3 and 4 without major component replacements
- → no active electronics at the detector

FIT subdetectors – FT0

Detector module

- ** MCP-PMT PLANACON
 XP85002/FIT-Q
- # 4 quartz radiators &4 readout channels

FT0-C

- ***** 28 modules
 - \rightarrow 112 channels
- ** concave shape

FT0-A

- ★ 24 modules
 - \rightarrow 96 channels
- # planar shape

FIT subdetectors – FT0 Detector module tests at CERN PS – few examples

Confirmation of importance of concave shape on the C-side

FIT subdetectors – FT0 Detector module tests at CERN PS – few examples

Confirmation of importance of concave shape on the C-side

Selection of the optimal optical grease, most transparent for Cherenkov light

FIT subdetectors – FT0 Comprehensive photosensor acceptance tests

66 units were tested

- * Pulse shape
- ★ Gain scan
- ***** Anode current saturation limit
- ***** Resistance
- * Afterpulses and dark count rate
- ****** Long term HV stress-test

FIT subdetectors - FT0

Comprehensive photosensor acceptance tests

66 units were tested or retested

- * Pulse shape
- *** Gain scan**
- ***** Anode current saturation limit
- ***** Resistance
- * Afterpulses and dark count rate
- ****** Long term HV stress-test

FIT subdetectors – FT0 Comprehensive photosensor acceptance tests

66 units were tested or retested

- * Pulse shape
- ★ Gain scan
- ***** Anode current saturation limit
- * Resistance
- * Afterpulses and dark count rate
- *** Long term HV stress-test**

FIT subdetectors – FT0 Comprehensive photosensor acceptance tests

66 units were tested or retested

- * Pulse shape
- ★ Gain scan
- ***** Anode current saturation limit
- * Resistance
- * Afterpulses and dark count rate
- ***** Long term HV stress-test

See the following publications:

[1] https://arxiv.org/pdf/1807.03804.pdf

[2] Yu.A. Melikyan, Performance of the costeffective Planacon® MCP-PMTs in strong magnetic fields, in final review stage in NIMA

*** Operation within magnetic field**

FIT subdetectors – FV0

- ***** 40 scintillator cells
- ***** 48 readout channels
 - \rightarrow 2 ch, for every 5th-ring-cell
- * novel light-collection system
 - \rightarrow keep pulse width < 25 ns
 - → no wavelength-shifting fibers

V. Grabski, (2019). New fibre read-out design for the large area scintillator detectors: providing good amplitude and time resolutions. https://arxiv.org/abs/1909.01184v1

Maciej Slupecki

FIT subdetectors – FV0

Uniformity of ring 5 in single-sector prototype tested at CERN PS

FIT subdetectors - FDD

- * 2 arrays of 2-layered scintillators, 4 cells per layer
 - → 16 readout channels in total
- Light is collected through plastic bars doped with very fast wavelength shifter (NOL-38), and transported through clear fiber bundles to PMTs
- Studies diffractive or photon-induced processes
 - \rightarrow tags absence of activity in the forward direction

Centrality and event plane

17.10.2020

Maciej Slupecki

18

Simulated physics performance Centrality resolution

Simulated physics performance **Event-plane resolution**

Event-plane resolution – definition

$$\mathcal{R}_n = \langle \cos\left[n\left(\Psi_n - \Psi_{\mathrm{RP}}\right)\right] \rangle$$
 Harmonic number (for elliptic flow n = 2) Reference (simulated) plane event plane

ALI-SIMUL-96184

FIT electronics Showing FT0 part only

FIT electronics Latest test results

Vertex trigger resolution at low channel multiplicity (2 & 3)

Charge of 4 random channels from the partly assembled FT0-A detector and final version of FEE using laser

Time vs. charge shows no correlation
→ CFD works correctly

★ Assembled, integrated within the common structure with MFT, all connections tested
 → ready for installation

- Used for final FEE tests
- ** Ongoing simple modification of metal structure
- # Expected assembly time: <2 weeks</pre>

- Measurements to be completed:
 - \rightarrow pulse-shape verification
 - → tests with final FEE, tuning for FV0
 - → charge measurement with cosmic muons

- Characterization of photosensors is completed
- ** Assembly of scintillator modules takes 60 h
- ** Assembly of fiber bundles takes 2-3 weeks

- * Components are tested in parallel with assembly
- ****** Electronics designed for FT0
 - → need to be tested and tuned for FV0 and FDD
- * Mass production will start after all tests completed
 - → in January 2021

	Components for assembly ready & tested	Assembly	Final standalone testing	Scheduled for installation in ALICE*	Remaining time	
FT0-C				30.11.2020 - 22.01.2021	2 months	
FT0-A				24 - 28.05.2021	7 months	
FV0-A				24 – 28.05.2021	7 months	
FDD-C				1-26.02.2021	3-4 months	
FDD-A				1-26.02.2021	3-4 months	
FEE				Before 06.2021 (global commissioning)	7.5 months	

^{*}According to v42, subject to change, depending on COVID-19 effects

Summary

- FIT is essential for the operations in ALICE in Run 3 and 4
 - Trigger, luminometer
 - Diffractive physics, collision time for PID, centrality and event-plane
- FIT consists of 3 very different, and therefore, complimentary subdetectors
- FIT detectors are partly assembled and tested
 - Entire detector assembly should be completed by December 2020
- Installation will be started in December 2020 and will end in April 2021
 - FIT is on time for installation

Thank you for your attention

Backup

Maciej Slupecki