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The particle-hole dispersive optical model (PHDOM), having a few
unique abilities, is used to describe main properties of isoscalar giant
multipole resonances ! ≤ 3 in medium-heavy spherical nuclei.
Besides the energy, main properties include the projected transition
density, strength function and probabilities of direct one-nucleon decay.
Overtones of the isoscalar monopole and quadrupole giant resonances
are also considered. Calculation results obtained for the 208Pb nucleus
are compared with available experimental data.



Isoscalar Multipole Giant Resonances
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Brief description of the model

The particle-hole dispersive optical model (PHDOM) was
formulated recently (Urin M.H., Phys. At. Nucl., 2011; Phys.
Rev. C, 2013) to describe in a semi-microscopic way the main
properties of high-energy particle-hole–type excitations in
medium-heavy-mass spherical nuclei.

Within PHDOM the main relaxation modes of the mentioned
excitations are commonly taken into account. These modes
are:

(i) Landau damping (that is due to the shell-structure of nuclei);
(ii) coupling to single-particle continuum (that is due to the
fact, that nuclei are the open Fermi-systems);

(iii) coupling to many-quasiparticle configurations, or to chaotic
states (the spreading effect).

The model is an extension of the standard and non-standard
versions of the continuum RPA on taking (phenomenologically
and in average over the energy) the spreading effect into
account.



The unique feature of the model is its abilities 
to describe: 

q the energy-averaged strength functions,
corresponding to a single-particle long-range
external field (or to a probing operator) in a wide
interval of the excitation energy, including the given
giant resonance and its low- and high-energy
“tails”;

q direct-nucleon-decay properties of high-energy p-h-
type nuclear excitations (partial probabilities of
direct nucleon decay from a given energy interval);

q the energy-averaged double transition density,
which determines the energy-averaged cross
sections of hadron-nucleus scattering,
accompanying by excitation of the particle-hole-
type states in a wide excitation energy interval.



Ingredients of the model: 

ü the Landau-Migdal p-h interaction;
ü a phenomenological nuclear mean field partially
consistent with interaction;

ü the imaginary part of the effective optical model
potential (this part determines the corresponding real
part via a proper dispersive relationship).

Most of model parameters are taken from independent
data, except of the intensity of the imaginary part, which
is adjusted to reproduce in calculations the observable
total width of the given giant resonance.



u the isospin symmetry of a model Hamiltonian

The mean Coulomb

– the main source of the weak violation of the isospin 
symmetry.
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u the translation symmetry of a model
spurious state

- self-consistency 
condition

 

UC
(-) = UC (a)t a

(-)

a
å

 

H,T (-)[ ]=UC
(-)

 

¯
RPA
¯

 

U1 =
1
2
v(r)t (3)

 

v(r) = 2F 'n(-)(r)

 

n(-)(r) = nn (r) - n p (r)

)),,(1()()( aRrffrffrF WS
ex

WS
in -+=

)'()'')(()',( rrFrFCxxF -+= dtt

-1 0®w 1®EWSR

drrrn
r
VLL

dr
dV

m
EWSR LL

VL
2)(

222

)(.)1(
2

)( +ò ÷
÷
ø

ö
ç
ç
è

æ
÷
ø
ö

ç
è
æ++÷

ø
ö

ç
è
æ=

!



The nuclear mean field
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The Landau-Migdal particle-hole interaction 
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Spreading effect – PHDOM
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-iW (w )+ P(w)[ ] fWS (r) - the ”optical-model like” addition to the 
nuclear mean field 
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Basic equations for describing high-energy 
isoscalar multipole excitations within the PHDOM
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Projected transition density:

Equation for the effective field:



The IS radial component of the energy-averaged
“free” p-h propagator:
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The optical-model radial Green functions 
satisfy to the equations:
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h0,(µ )
- are the radial parts of a s-p Hamiltonian (including 

the spin-orbit and centrifugal terms)



Direct-one-nucleon-decay strength functions
and branching ratios
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Fig. 1. The relative energy-weighted strength functions calculated 
within PHDOM for ISGMR(solid line) and ISGMR2 (thin line) in 208Pb.
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Fig. 2. The same as in Fig. 1, but for ISGQR and ISGQR2.
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Fig. 3. The same as in Figs. 1,2, but for ISGDR and ISGOR.
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Fig. 4. The projected transition densities taken at the resonance 
peak-energy and calculated within PHDOM for ISGMR (solid line) 
and ISGMR2 (thin line) in 208Pb.
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Fig. 5. The same as in Fig. 4, but for ISGQR and ISGQR2.
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Fig. 6. The projected transition densities taken at the resonance 
peak-energy and calculated within PHDOM for ISGDR. 
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Fig. 7. The same as in Fig. 6, but for ISGOR.
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Table 1. The calculated parameters for the ISGRs in 208Pb.
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Table 2. Calculated partial branching ratios (%) for direct neutron 
decay of the ISGRs in 208Pb (Sµ=1).
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Table 3. Calculated partial branching ratios (%) for direct proton decay of 
the ISGDRs in 208Pb.
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Conclusion
The particle-hole (p-h) dispersive optical model (PHDOM), was implemented for

describing main properties of Isoscalar Giant Multipole Resonances up to L=3 in medium-
heavy closed-shell nuclei. The overtones of the monopole and quadrupole isoscalar giant
resonances were also studied. The main properties, considered in a large excitation-energy
interval, include the following energy-averaged quantities: (i) the strength function related to
an appropriate probing operator; (ii) the projected one-body transition density (related to the
corresponding operator), and; (iii) partial probabilities of direct one-nucleon decay. Unique
abilities of PHDOM where conditioned by a joint description of the main relaxation processes
of high-energy p-h configurations associated with a given giant resonance (GR). Two
processes (Landau damping and coupling the mentioned configurations to the single-particle
continuum were described microscopically in terms of Landau-Migdal p-h interaction and a
phenomenological mean field, partially consistent with this interaction. Another mode, the
coupling to many quasiparticle states (the spreading effect) was described
phenomenologically in terms of the imaginary part of the properly parameterized energy-
averaged p-h self-energy term. The imaginary part determines the real one via a
microscopically-based dispersive relationship. The model parameters related to a mean field
and p-h interaction were taken from independent data with the isospin symmetry, and
translation invariance of the model Hamiltonian also taken into account. Parameters of the
imaginary part of the strength of self-energy term were adjusted to reproduce in PHDOM-
based calculations of total width of ISGMR for the considered closed-shell nucleus 208Pb
taken as an example. The calculation results were compared with available experimental
data. Some of the results were compared with those obtained in microscopic Hartree-Fock
based RPA calculations. These comparisons indicate that PHDOM is a powerful tool for
describing ISGMPR in medium-heavy closed-shell nuclei. Extension of the model by taking
nucleon-nucleon pairing interaction into account in open-shell nuclei is in order.
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