Contribution ID: 290 Type: Poster report

THE CORRELATION CHARACTERISTICS OF $^{14}C(3^{-}; {\bf 6.73~MeV})$ NUCLEUS IN THE $^{13}C(d,p\gamma)^{14}C$ REACTION

Wednesday, 14 October 2020 18:50 (20 minutes)

In [1] we have investigated the cross sections of the $^{13}C(d,p\gamma)^{14}C(3^-;6.73 \text{ MeV})$ reaction at E_d = 15.3 MeV. In this article the double-differential cross sections of the same reaction were measured for six proton emission angles on the SINP MSU 120-cm cyclotron. The angular correlation functions $W(\gamma,\varphi_{\gamma};p)$ were measured at four planes of gamma-rays registration. It allowed to restore sixteen even $A_{k\kappa}(p)$ components of density matrix spin-tensor of the final nucleus $^{14}C(3^-)$. The obtained $A_{k\kappa}(p)$ were used to determine other $^{14}C(3^-)$ orientation characteristics: the populations P(p) of sublevels with the M projection of the 3^- spin, orientation tensors $t_{k\kappa}(p)$ and polarization tensors $t_{k\kappa}(p)$ and polarization tensors $t_{k\kappa}(p)$ and polarization tensors $t_{k\kappa}(p)$ and polarization tensors $t_{k\kappa}(p)$ and $t_{k\kappa}(p)$ and $t_{k\kappa}(p)$ and $t_{k\kappa}(p)$ and $t_{k\kappa}(p)$ and polarization tensors $t_{k\kappa}(p)$ and $t_{$

Experimental data were compared with theoretical ones, obtained within the neutron stripping mechanism by the coupled-channel method (code FRESCO [2], dotted curves in fig. 1a, b, c) and for the compound nucleus statistical mechanism (code CNCOR [3], dash-dot curves).

Our model analysis of $^{14}C(3^-)$ orientation characteristics has revealed that neutron stripping mechanism are dominant mechanisms of $^{13}C(d,p)^{14}C(3^-)$ reaction.

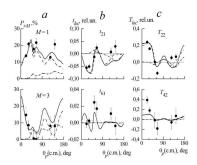


Figure 1: a –The populations $P(\theta_p)$ of sublevels 14C(3-) nucleus, b –orientation tensors $t_k \kappa(\theta_p)$, c –polarization tensor $T_k \kappa(\theta_p)$. Solid curve –the sum of the mechanisms examined

- L.I.Galanina, N.S.Zelenskaya, V.M.Lebedev, N.V.Orlova, A.V.Spasski // Phys. Atom. Nucl. 2018. V. 81. P. 176.
- 2. http://www.fresko.org.uk/.
- 3. T.L.Belyaeva, N.S.Zelenskaya, et al. // Comp. Phys. Comm. 1992. V. 73. P. 161.

Primary authors: Prof. ZELENSKAYA, Nataliya (M.V. Lomonosov Moscow State University); Dr GALANINA, Lidiya (Skobeltsyn Institute of Nuclear Physics); Dr LEBEDEV, Victor (M.V. Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics); Mrs ORLOVA, Nina (M.V. Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics); Dr SPASSKY, Andrey (M.V. Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics); Mr TYURIN, Iliya (M.V. Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics)

Presenter: Prof. ZELENSKAYA, Nataliya (M.V. Lomonosov Moscow State University)

Session Classification: Poster session 1 (part 2)

Track Classification: Section 1. Experimental and theoretical studies of the properties of atomic nuclei.