Contribution of tensor forces to formation of Gamow-Teller Resonance and its overtone in closed-shell parent nuclei

S.Yu. Igashov ${ }^{1}$, G.V. Kolomiytsev ${ }^{2}$, M.H. Urin ${ }^{2}$
${ }^{1}$ The Federal State Unitary Enterprise Dukhov Automatics Research Institute (VNIIA), 127055, Russia, Moscow
${ }^{2}$ National Research Nuclear University "MEPhI" (Moscow Engineering Physics Institute), 115409, Russia, Moscow

A mean-field and interaction in the particle-hole ($\mathrm{p}-\mathrm{h}$) channel are the input quantities for any RPA-based approach to describing Gamow-Teller Resonance and its overtone - Isovector Giant Spin-Monopole Resonance in the $\beta^{(-)}$-channel (GTR and $\operatorname{IVGSMR}^{(-)}$, respectively). The recent example of such an approach is given in Ref. [1], where main properties of mentioned resonances in ${ }^{208} \mathrm{Bi}$ are described within the continuum-RPA-based semimicroscopic p-h dispersive optical model. A realistic partially self-consistent phenomenological mean field and Landau-Migdal p-h interaction have been used in this study. Provided that dimensionless strength g^{\prime} of the spin-isospin part of the mentioned interaction is adjusted to reproduce in calculations of the GT strength function the observable GTR energy, the calculated IVGSMR ${ }^{(-)}$energy is found to be less (on about 3 MeV) than respective experimental value. In the present study, we attempt to resolve this puzzle by taking into account tensor forces, which lead to mixing 1^{+} spin-monopole and spin-quadrupole excitations. In applying to describing GT strength distribution, tensor forces have been considered in Ref. [2]. Mentioned mixing takes place due to both the spin-orbit term in a mean field (so-called nonsymmetric or non-diagonal approximation in RPA-based approaches employing central forces [3] and non-central (tensor) forces. Using the mentioned continuum-RPA-based analysis of Ref. [1] as a starting point, we resolved the above-described puzzle related to evaluation of the IVGSMR ${ }^{(-)}$energy by taking tensor forces into account. As expected, the strength parameter of the spin-isospin part of non-central forces $g^{\prime} \mathrm{T}$ is found to be less than the Landau-Migdal parameter g^{\prime}.
This work was partially supported by the Russian Foundation of Basic Research (grant No. 19-02-00660).

1. G. V. Kolomiytsev, M. G. Urin, Yad. Fiz. \textbf \{83\}, 119 (2020).
2. A. P. Severyukhin and H. Sagawa, Prog. Theor. Exp. Phys. 103D03 (2013).
3. M.G. Urin, '`Relaxation of nuclear excitations". Moscow, Energoatomizdat, 1991 (in Russian).

Contribution of tensor forces to formation of Gamow-Teller Resonance and its overtone in closed-shell parent nuclei

External field (probing operator)

$$
\begin{aligned}
& V_{J L S M}^{(-)}(\mathbf{r})=V_{J L S}^{(-)}(r) T_{J L S M}(\mathbf{n}), \quad J=1, S=1, L=0, L=2 \\
& \tilde{V}_{J=1, L=0, S=1}^{(-)}(r)=\left\{\begin{array}{l}
V_{G T}=1 \\
V_{S M}(r)=r^{2}-\eta
\end{array}\right. \\
& T_{J L S M}(\mathbf{n})=\sum_{m \mu}\langle L m, S \mu \mid J M\rangle Y_{L m} \cdot \boldsymbol{\sigma}_{S, M} \\
& T_{J=1, L=0, S=1, M}=Y_{00} \cdot \boldsymbol{\sigma}_{1, M}
\end{aligned}
$$

Effective field

$$
\tilde{V}_{J=1, M}^{(-)}(\mathbf{r}, \omega)=\tilde{V}_{J=1, L=0, S=1}^{(-)}(r, \omega) T_{J=1, L=0, S=1, M}(\mathbf{n})+\tilde{V}_{J=1, L=2, S=1}^{(-)}(r, \omega) T_{J=1, L=2, S=1, M}(\mathbf{n})
$$

Set of eqs. for the radial effective fields:

$$
\begin{aligned}
& \tilde{V}_{J, L=0, S}^{(-)}(r, \omega)=V_{J, L=0, S}^{(-)}(r)+\frac{2 G^{\prime}}{r^{2}} \int_{0}^{\infty} A_{J ; L=0, L=0, S, S}^{(-)}\left(r, r^{\prime}, \omega\right) \tilde{V}_{J, L=0, S}^{(-)}\left(r^{\prime}, \omega\right) d r^{\prime}+ \\
& \\
& \quad+\frac{2 G^{\prime}}{r^{2}} \int_{0}^{\infty} A_{J ; L=0, L=2, S, S}^{(-)}\left(r, r^{\prime}, \omega\right) \tilde{V}_{J, L=2, S}^{(-)}\left(r^{\prime}, \omega\right) d r^{\prime} \\
& \tilde{V}_{J, L=2, S}^{(-)}(r, \omega)=\begin{aligned}
& \frac{2 G^{2}}{r^{2}} \int_{0}^{\infty} A_{J ; L=2, L=0, S, S}^{(-)}\left(r, r^{\prime}, \omega\right) \\
& \tilde{V}_{J, L=0, S}^{(-)}\left(r^{\prime}, \omega\right) d r^{\prime}+ \\
&+\frac{2 G^{\prime}}{r^{2}} \int_{0}^{\infty} A_{J ; L=2, L=2, S, S}^{(-)}\left(r, r^{\prime}, \omega\right) \tilde{V}_{J, L=2, S}^{(-)}\left(r^{\prime}, \omega\right) d r^{\prime}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
A_{J ; L=0, L=2, S, S}^{(-)}\left(r, r^{\prime}, \omega\right)=\sum_{(\pi), v} n_{v} t_{(\pi)(v)}^{J, L=0, S} t_{(\pi)(v)}^{J, L=2, S} & \chi_{v}(r) \chi_{v}\left(r^{\prime}\right) g_{(\pi)}\left(r, r^{\prime}, E=E_{v}+\omega\right)+ \\
& +\sum_{(v), \pi} n_{\pi} \pi_{(v)(\pi)}^{J, L=0, S} t_{(v)(\pi)}^{J, L=2, S} \chi_{\pi}(r) \chi_{\pi}\left(r^{\prime}\right) g_{(v)}\left(r, r^{\prime}, E=E_{\pi}-\omega\right)
\end{aligned}
$$

$$
t_{(v)(\lambda)}=\frac{\left\langle j_{v} l_{v}\left\|T_{J L S}\right\| j_{\lambda} l_{\lambda}\right\rangle}{\sqrt{2 J+1}}
$$

Polarizability

$$
\begin{aligned}
P^{(-)}\left(\left[\tilde{V}_{J, L=0, S}^{(-)}\right], \omega\right)= & \int_{0}^{\infty} \int_{0}^{\infty} V_{J, L=0, S}^{(-)}(r)\left\{A_{J, L=0, L=0, S, S}^{(-)}\left(r, r^{\prime}, \omega\right) \tilde{V}_{J, L=0, S}^{(-)}\left(r^{\prime}, \omega\right)+\right. \\
& \left.A_{J ; L=0, L=2, S, S}^{(-)}\left(r, r^{\prime}, \omega\right) \tilde{V}_{J, L=2, S}^{(-)}\left(r^{\prime}, \omega\right)\right\} d r d r^{\prime}
\end{aligned}
$$

Strength function

$$
S\left(\left[\tilde{V}_{J, L=0, S}^{(-)}\right], \omega\right)=-\frac{1}{\pi} \operatorname{Im} P^{(-)}\left(\left[\tilde{V}_{J, L=0, S}^{(-)}\right], \omega\right)
$$

