LXX International conference "NUCLEUS –2020. Nuclear physics and elementary particle physics. Nuclear physics technologies"

Contribution ID: 446

Type: Oral report

ENERGY SURFACE AROUND A DEFORMED EVEN-EVEN NUCLEI WITH 150<A<190

Thursday, 15 October 2020 16:25 (25 minutes)

VlasnikovA.K., Zippa A.I., MikhajlovV.M., St. Petersburg State University, St. Petersburg, Russia E-mail: a.vlasnikov@spbu.ru

If an ideal energy surface around a deformed nucleus with even N and Z existed and were linear and quadratic in deviations s and t from N and Z respectively $(|s|/N \ll 1, |t|/Z \ll 1)$

 $E(N+s, Z+t) = M(N+s, Z+t) - m_n(N+s) - m_p(Z+t) = E(N, Z) + d_{1n}s + d_{1p}t + d_{1$

$$d_{2n}s^2/2 + d_{2p}t^2/2 + d_{1n1p}st$$

 $(E, M \text{ are nuclear energy and mass}, m_n, m_p \text{ are nucleon masses})$, then parameters E(N, Z) and d_{inkp} should not depend on those adjacent nuclei which are used for calculations of these parameters. In particular, a measured E(N, Z) has to coincide with a calculated parameter E(N, Z).

For determination of E(N, Z) - E(N, Z) and other parameters three groups of even-even nuclei are applied: s-Appr. (Approximation, $s = \pm 2, \pm 4, t = 0$, i. e. isotopes); t-Appr. ($s = 0, t = \pm 2, \pm 4$, i.e. isotones) and (st)- Appr. in which $s = \pm 2, t = \mp 2$; $s = \pm 4, t = \mp 4$

Calculated quantities E(N, Z) - E(N, Z) are given in Table [1], which shows that these quantities are sign variable in different approximations and a maximum divergence attains \simeq 120keV. Approximately the same difference is found in other parameters. Thus, description of the energy surface around a deformed even-even nucleus by Eq. (1) is rather approximate. This information is useful for prediction of unknown masses and calculations of the pairing energies.

Nucleus	$E(N.Z) - \mathscr{E}(N.Z)$		
	s-Appr.	t-Appr.	(st)-Appr.
$^{154}_{64}\text{Gd}_{90}$	128.6±2.0	-8.9±19.2	121.8±10.3
¹⁶⁰ ₆₆ Dy ₉₄	-29.6±8.6	-53.1±9.2	-68.2±18.4
$^{170}_{70}$ Yb ₁₀₀	37.7±1.4	29.9±16.9	-8.8±33.9
$^{180}_{74}W_{106}$	74.6 ±13.6	77.6±11.3	-55±61
¹⁸⁸ ₇₆ Os ₁₁₂	-21.0±1.1	-179.0±7.2	12.4±9.7

Figure 1:

The reported study was funded by RFBR, project number 20-02-20032.

1. M.Wang, G.Audi, F.G.Kondev et al. // Chinese Phys. C. 2017. V. 41. 030003.

Primary authors: VLASNIKOV, A. K. (St.Petersburg State University); ZIPPA, A. I. (St. Petersburg State University); MIKHAJLOV, V.M. (St. Petersburg State University)

Presenter: VLASNIKOV, A. K. (St.Petersburg State University)

Session Classification: Section 1. Experimental and theoretical studies of the properties of atomic nuclei

Track Classification: Section 1. Experimental and theoretical studies of the properties of atomic nuclei.