Contribution ID: 164 Type: Oral report

COLLECTIVE STATES AND BANDCROSSING IN EVEN CERIUM ISOTOPES

Tuesday, 13 October 2020 17:00 (25 minutes)

On the base of microscopic version of the IBM1 plus other bosons of positive parity with spins from 0^+ to 10^+ properties of yrast-band states in even Ce isotopes are studied. Parameters of the boson Hamiltonian and interactions of the collective quadrupole bosons with other bosons are calculated microscopically. This study is a continuation of similar works on the isotopes Xe and Ba [1], in which the possibilities of the microscopic theory have been investigated in the description of increasingly deformed nuclei.

In all considered even Ce isotopes in which there are developed yrast-bands theoretical calculations show that at spin Icr = 12^+ in $^{122-128}$ Ce and at Icr = 10^+ in 130,132 Ce the band-crossing takes place just as in even Ba isotopes [1]. The back-bending in moment of inertia (expect 122 Ce) at corresponding rotational frequency and minima in $B(E2;\ I \to I-2)$ values at I=Icr serve experimental confirmation of such calculations. In 122 Ce because of a strong interaction between two bands the moment of inertia up to $I=14^+$ retains the square dependence on frequency. The suggested theory satisfactory describes these experimental facts: fig.1 present yrast-band energies (theoretical quantities distinguish from experimental ones not more then by 60 keV), fig.2 B(E2)'s for 128 Ce.

1. A.D.Efimov, V.M.Mikhajlov//Bull.RAS.Ac.Sci.Phys.2018.V.82.P.1266; ibid.2019.V.83.P.113.

Primary author: Dr EFIMOV, Alexander (Admiral Makarov State University of Maritime and Inland Shipping)

Presenter: Dr EFIMOV, Alexander (Admiral Makarov State University of Maritime and Inland Shipping)

Session Classification: Section 1. Experimental and theoretical studies of the properties of atomic nuclei

Track Classification: Section 1. Experimental and theoretical studies of the properties of atomic nuclei.