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2Introduction

In Q.M., a quantum speed limit is a bound on the minimal time required
for a quantum system to evolve between two (given) distinguishable states.

For shortness, we will assume that the measurement units are chosen in such
a way that

h̄ = 1.

Let us consider an isolated Q.M. system with a Hamiltonian H, which is sup­
posed to be a time­independent self­adjoint operator in the Hilbert space H. So
that the vectors of H are considered as possible (pure) states of the system.
Evolution of a state vector ψ(t) ∈ H, t ∈ R, is governed by the Schrödinger
equation

i
d
dt

ψ = Hψ, (1)

ψ(t)
∣∣∣∣
t=t0

= ψ0, (2)

where ψ0 ∈ H is an initial state. (Surely, it is required that ψ(t) ∈ Dom(H) for
any t under consideration :­).

Let t0 = 0. Then the solution to (1), (2) is given by

ψ(t) =U(t)ψ0, where U(t) = e−iHt, t ∈ R; (3)
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the operators U(t), t ∈ R, form a strongly continuous unitary group.

Studies of quantum speed limits originate from the very basic question:

How fast can the isolated system with the Hamiltonian H evolve to a state
orthogonal to its initial state ψ0?

The importance of this question is obvious in many respects. Probably, the
very latest motivation comes from quantum information theory and quantum
computing.
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Known answers to the above basic question — lower bounds for the orthogo­
nalization time T⊥:

Mandelshtam–Tamm inequality (1945)

T⊥ ≥ π
2∆E

, (4)

Margolis–Levitin inequality (1998)

T⊥ ≥ π
2δE

, (5)

where

∆E =

√
⟨H2ψ0,ψ0⟩−⟨Hψ0,ψ0⟩2 and δE = ⟨Hψ0,ψ0⟩−min

(
spec(H)

)
(6)

are the energy spread (dispersion) for the state ψ0 and the average energy for
this state measured relative to the lower bound of H.

Both inequalities recall the uncertainty relation for energy and time but are very different in the

essence since these inequalities are related not to the standard deviation in the measurement

of t but to the well­founded time for a given state to evolve into an orthogonal state.
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Fleming bound (1973)

Tθ ≥ θ
∆E

, (7)

where Tθ is the time moment at which the acute angle

∠
(
ψ0,ψ(t)

)
:= arccos |⟨ψ0,ψ(t)⟩|

between the vectors ψ0 and ψ(t) reaches the value of θ ∈ (0,π/2].

The Mandelshtam­Tamm bound is a particular case of the Fleming bound for
θ = π

2 .

All the three bounds (4), (5), and (7) have been proven to be sharp.

Notice that the Mandelshtam­Tamm bound has been rediscovered several
times by different researchers. Also, there are generalizations of this bound to
the evolution of mixed states and more detail estimates for particular classes
of quantum­mechanical evolutionary problems.



6Our results: Bounds for the speed of the subspace evolution

We are concerned not with a single state but with a whole (possibly infinite­
dimensional) subspace spanned by the system states that are subject to the
Schrödinger evolution. That is, we consider a subspace P0 ⊂ H every vector
of which is the subject to the Schrödinger evolution (1), (2), that is,

i
d
dt

ψ = Hψ, (8)

ψ(t)
∣∣∣∣
t=t0

= ψ0, ψ0 ∈P0. (9)

For simplicity (and sometimes not only for simplicity), the Hamiltonian H is
assumed to be a bounded operator.

Given t ≥ 0, by P(t) we will denote the subspace of H spanned by the values
ψ(t) of the vector functions that solve (8), (9) for various ψ0 ∈P0. So that we
deal with a path P(t), t ≥ 0, in the set of all subspaces of the Hilbert space H.
Or (and this is the same) with the path

P(t), t ≥ 0, Ran
(
P(t)

)
=P(t), (10)

of the orthogonal projections P(t) in H onto the respective subspaces P(t).
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It is well known (and this is elementarily verified) that the path P(t) is a (unique)
solution to the Cauchy problem

i
d
dt

P = [P,H], (11)

P(t)
∣∣∣∣
t=t0

= P0, (12)

where [P,H] := PH −HP is the commutator of P = P(t) and H; P0 denotes the
orthogonal projection onto the initial subspace H0. The solution to (11), (12) is
explicitly given by

P(t) =U(t)P0U(t)∗ = e−iHtP0eiHt. (13)



8

It is well known that the set of all orthogonal projections in the Hilbert space H

(and hence the set of all subspaces of H) is a metric space with distance given
by the standard operator norm,

ρ(Q1,Q2) := ∥Q1−Q2∥, ρ(Q1,Q2) := ρ(Q1,Q2),

where Q1, Q2 are arbitrary orthogonal projections and Q1, Q2, their ranges.

It is, however, much less known that there is another natural metric on the set
of all orthogonal projections in/ all the subspaces of the Hilbert space H. The
distance is defined by

ϑ(Q1,Q2) := ϑ(Q1,Q2) := arcsin(∥Q1−Q2∥). (14)

That (14) is a metric has been first proven in 1993 by Lawrence Brown. An
alternative (and, we think, somewhat simpler) proof may be found in our joint
paper with Sergio Albeverio (2013).

The quantity ϑ(Q1,Q2) is called the maximal angle between the subspaces
Q1 and Q2.
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Remark The concept of maximal angle between subspaces is traced back
to Krein, Krasnoselsky, and Milman (1948). Assuming that (Q1,Q2) is an or­
dered pair of subspaces with Q1 ̸= {0}, they applied the notion of the (relative)
maximal angle between Q1 and Q2 to the number

sinφ(Q1,Q2) = sup
x∈Q1,∥x∥=1

dist(x,Q2).

If both Q1 ̸= {0} and Q2 ̸= {0} then

ϑ(Q1,Q2) = max
{

φ(Q1,Q2),φ(Q2,Q1)
}
.

Unlike φ(Q1,Q2), the maximal angle ϑ(Q1,Q2) is always symmetric with re­
spect to the interchange of the arguments Q1 and Q2. Furthermore,

φ(Q2,Q1) = φ(Q1,Q2) = ϑ(Q1,Q2) whenever ∥Q1−Q2∥< 1.



10

Theorem 1. Suppose that Tθ is a time moment for which the maximal angle
between the initial subspace P0 and a subspace in the path P(t), t ≥ 0, reaches
the value of θ , 0 < θ ≤ π

2 , that is,

ϑ
(
P0,P(Tθ)) = θ . (15)

Then the following inequality holds:

Tθ ≥ θ
∆EP0

, (16)

where
∆EP0 := sup

ψ∈P0,∥ψ∥=1

(
⟨H2ψ,ψ⟩−⟨Hψ,ψ⟩2)1/2

Remark. The bound (15) is sharp since it is sharp already in the one­
dimensional case (where (15) turns into the Fleming bound for the speed of a
state evolution).
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Lemma. For the maximal energy dispersion ∆EP0 on the subspace P0 one
always has the (optimal) bound

∆EP0 ≤
Emax(H)−Emin(H)

2
, (17)

where the subspace P0 is arbitrary subspace of H and

Emin(H) = min
(
spec(H)

)
and Emax(H) = max

(
spec(A)

)
are the upper and lower bounds of the spectrum of H, respectively.

Corollary. Assume that Ω is a non­negative number and let BΩ(H) be the set
of all bounded self­adjoint operators H in H such that

Emax(H)−Emin(H)≤ Ω.

Then

inf
H∈BΩ(H)

Tθ(H)≥ 2θ
Ω

, (18)

where Tθ(H) is a time moment for which the maximal angle between the initial
subspace P0 and a subspace in the path P(t), t ≥ 0, reaches the value of
θ ≤ π

2 .


