NUCLEUS-2020

STUDY OF LEVEL STRUCTIRE OF HEAVY HELIUM ISOTOPE 8He IN STOPPED PION ABSORPTION

B.A. Chernyshev

National Research Nuclear University "MEPhI"

Heavy helium isotope ⁸He

Among the nucleon-stable isotopes, ${}^{8}\text{He}$ has a record ratio of the number of neutrons to the number of protons: N/Z=3.

In ⁸He, the valence nucleons are more bound compared to the valence neutrons in 6 He ($S2n(^{8}$ He) = 2.14 MeV, $S2n(^{6}$ He) = 0.973 MeV.

A possible consequence is the coincidence of the values of the root-mean-square radii of these isotopes $(RRMS(^{6}He) = 2.50 \pm 0.05 \text{ fm}, RRMS(^{8}He) = 2.52 \pm 0.03 \text{ fm})$

This coincidence and careful analysis of the measured cross sections for different breakup channels suggest that the structure is ⁸He is best described as a five-body system (⁴He+n+n+n) rather than as a two-neutron halo (⁶He+n+n)

It was shown experimentally and theoretically, that along with the $(p3/2)^4$ component the wave function of the ground state, can contain a noticeable admixture of other components $-(p3/2)^2(s1/2)^2$, $(p3/2)^2(d3/2)^2$ and $(p3/2)^2(p1/2)^2$.

Heavy Helium Isotope 8He

https://www.nndc.bnl.gov/nudat2

(3-) -----7160 0.1 MeV ----- 6030 0.15 MeV (1-) — 4360 1.3 MeV $n \approx 100 \%$ 2+ ---------3100 0.6 MeV $n \approx 100 \%$, $\alpha \le 5 \%$ $^{8}_{2}$ He $_{6}$

 $S_{2n} = 2.14 \text{ MeV}$

Excited States of 8He

E_x , MeV	Γ, MeV	J^{P}	work, reaction
$2.6 \div 3.6$	~0.6	2+	[1]
4.36(20)	1.3(5)	(1:)	
(6.03(10))	0.15(15)		
7.16(4)	0.1(1)	(3-)	
3.62(14)	0.3(2)	2+	[2], (p,p')
5.4(5)	0.5(3)		
≈3		1-	[3], (t,p)
$3.6 \div 3.9$	$0.52 \div 0.82$	2+	
$5.3 \div 5.5$		1+	
≈7.5			
2.99(2)	0.65(2)	2+	[4],
4.14(6)	1.25(5)		¹² C(8He,6Henn)X

- •1. Tilley D R, et al., 2005 Nucl. Phys. A 745 155.
- •2. Scaza F et al., 2007 Nucl. Phys. A 788 260c.
- •3. Golovkov M S et al., 2009 Phys. Lett. B 672 22.
- •4. XIAO J et al., 2012 Chin. Phys. Lett. 29 082501.

•Lapoux V and Alamanos N, 2015 Europ. Phys. J. A 51 91.

Stopped pion absorption by nuclei — Tool for production of neutron-rich states

$$\pi^- + {}^9\text{Be}, {}^{10,11}\text{B}, {}^{12}\text{C} \rightarrow \text{exotic nuclei} + \text{X}$$

$$\pi^{-}$$
 + **pn** (T=0, S=1, l_{pn} =0) \rightarrow **nn**

$$\pi^- + pp \rightarrow pn$$

Cluster absorption

$$\pi^- + {}^4\text{He} \rightarrow \text{nt}$$
 $\pi^- + {}^4\text{Li} \rightarrow \text{pt}$

$$\pi^- + {}^4Be(Tetraproton) \rightarrow p \, {}^3He$$

$$\begin{array}{c} \pi^{\text{-}} + pp \rightarrow np \rightarrow p \\ \downarrow \\ n+d \rightarrow t \end{array}$$

Secondary pick-up

Stopped pion absorption by nuclei — Tool for production of neutron-rich states

Three-body channels

Two-body channels

$$P_R \sim 100 \div 200 \text{ MeV/c}$$

Stopped pion absorption by nuclei — Tool for production of neutron-rich states

Advantages and disadvantages

Advantages of the method:

Formation of residual nuclei with large neutron excess N >> Z

The absence of errors due to the energy resolution and the angular divergence of the beam

$$E_0 = M_A + m_{\pi} - /B_{\pi}/; \qquad P = 0$$

Large range of excited energy studied $0 \le E_x \le 40 \text{ MeV}$

Opportunity to study a wide range of nuclei in a single experimental run

Disadvantages of the method:

Lack of reliable theoretical models that describe the reactions studied

It is quite difficult to determine quantum numbers of the state studied

Layout of spectrometer (LAMPF)

Beam	Target	Sizes and Impurities	Stop rate, 1/s	SCD- telescopes	Threshold(MeV)
Eπ= 30 MeV (Δp/p=±1%)	⁹ Be ^{10,11} B ^{12,14} C	Thickness – 25 mg/sm², (135µm), diameter – 26 mm,	~ 6.104	2 Si(Au) -T=100, 450μm 14 Si(Li) -T=3 mm, Wd≈0.1mm S=8 mm ² Ω=55÷15 mster	$E_{p} \approx 3.5,$ $E_{d} \approx 4,$ $E_{t} \approx 4.5,$ $E_{He} \approx 15.$

FWHM

 $\Delta E < 0.5 \text{ MeV } (Z=1)$

 $\Delta E < 2.0 \text{ MeV } (Z=2)$

 $\Delta MM < 1 \text{ MeV } (Z_1=1, Z_2=1)$

 $\Delta MM < 3 \text{ MeV } (Z_1=1, Z_2=2)$

⁸He production on the ⁹Be target π^{-9} Be $\rightarrow p$ ⁸He

N (arb. units)	75
N (arb	30 - 15 - 2 3
	0 2 4 6 8 10 12 14 MM (MeV)

$E_{\rm x}$, MeV	Γ, MeV
0.1(1)	0.1(1)
3.9 ± 0.2	≈0.5
4.6 ± 0.3	≈0.5

 $E_{\rm x} \approx 3 \,{\rm MeV}$???

 $E_{\rm x} \approx 6.5 \,{\rm MeV}$???

 $E_{\rm x} \approx 12 \, {\rm MeV}$???

- 2 Phase volume π^{-9} Be $\rightarrow p+^6$ He+ 2 n
- 3 Phase volume $\pi^{-9}Be \rightarrow p+^{7}He+ n$
- 4 Phase volume π^{-9} Be \rightarrow p+⁶He*(1.797) +2n

8He production on the ^{10}B target $\pi^{\text{--}10}B \to pp\,^8He$

$E_{\rm x}$, MeV	Γ, MeV	
~3		
≈4.6	<0.6	
≈6.4	<0.6	
~9.5		
12.2±0.5	0.8±0.3	

Phase volume $\pi^{-10}B \rightarrow pp \ ^6He^*(1.8)2n$

8He production on the ^{11}B target $\pi^{\text{--}11}B \to pd\,^8He$

$E_{\rm x}$, MeV	Г, MeV	
0.1±0.1	0.1±0.1	
3.9	0.5	
4.6	0.5	
6.4±0.2	0.6±0.3	
9.3±0.4	1.7±0.3	
11.5±0.3	0.8±0.3	

- 2 Phase volume $\pi^{-11}B \rightarrow pd^6He^2n$
- 3 Phase volume $\pi^{-11}B \rightarrow pd^{6}He^{*}(1.8)2n$

⁸He production on the ¹²C target $\pi^{-12}C \rightarrow p$ ³He ⁸He

$E_{\rm x}$, MeV	Γ, MeV	
0.0(1)	<0.2	
≈3. 9	<1	

1- total distribution by phase volumes

⁸He production on the ¹⁴C target $\pi^{-14}C \rightarrow t^{3}He^{8}He$

20 1	b
20 - (stint) N (arb. units) N (5 - 1)	
o Hill o	10 20 30
	MM (MeV)

$E_{\rm x}$, MeV	Γ, MeV
0.0(1)	<0.2
≈3.9	<1
≈6.4	<1

1- total distribution by phase volumes

⁸He production on the ¹⁴C target $\pi^{-14}C \rightarrow d^4He^8He$

$E_{\rm x}$, MeV	Γ, MeV	
0.0(1)	<0.2	
≈3.9	<1	
≈6.4	<1	

1- total distribution by phase volumes

Excited States of 8He

E_x , MeV	Γ, MeV	J^{P}	work, reaction
2.6 ÷ 3.6	~0.6	2+	[1]
≈3	~0.6	(1-), (2+)	[3], [4]
<mark>≈3 ???</mark>			π^{-9} Be $\rightarrow p^{-8}$ He
			$\pi^{-10}B \rightarrow pp^{8}He$
$3.6 \div 3.9$	≈0.5	2+	[2, 3]
3.9 ± 0.2	<mark>≈0.5</mark>		π^{-9} Be $\rightarrow p^{-8}$ He
≈4.2	1.2	≈(<i>1</i> ·)	[1, 4]
			π^{-9} Be $\rightarrow p^{-8}$ He
4.6 ± 0.3	<mark>≈0.5</mark>		$\pi^{-10}B \rightarrow pp^{8}He$
			$\pi^{-11}B \rightarrow pd^{8}He$
5.4(5)	0.5(3)	1+	[2, 3]
(6.03(10))	0.15(15)		[1]
≈ <mark>6.4</mark>	<mark>~0.6</mark>		$\pi^{-10}B \rightarrow pp^{8}He$
			$\pi^{-11}B \rightarrow pd^{8}He$
			$\pi^{-14}C \rightarrow t^3He^8He$
			$\pi^{-14}C \rightarrow d^4He^8He$
7.16(4)	0.1(1)	(3-)	[1, 3]
9.3(4)	1.7(3)		$\pi^{-10}B \rightarrow pp^{8}He$
			$\pi^{-11}B \rightarrow pd^{8}He$
12.2(3)	0.8(3)		$\pi^{-10}B \rightarrow pp^{8}He$
			$\pi^{-11}B \rightarrow \text{pd }^{8}\text{He}$

Conclusion

•The level structure of the heavy helium isotope ⁸He was experimentally determined in 6 channels of the reaction of the stopped pion absorption by ⁹Be, ^{10.11}B, and ^{12.14}C nuclei.

- •Data for low-lying states coincide with the results of other authors.
- •An excess of events is observed near the decay threshold, which may be related to the soft dipole resonance predicted by the Dubna group.
- •For the first time, highly excited levels were observed at $E_x \approx 6.4$, 9.3 and 12.2 MeV.

Thank you for your attention!

