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The Kharkov potential is a recent field theoretical model of
nucleon-nucleon (NN) interaction that has been built up in the
framework of the instant form of relativistic dynamics starting
with the total Hamiltonian of interacting meson and nucleon
fields and using the method of unitary clothing transformations.
The latter connect the representation of “bare” particles (BPR)
and the representation of “clothed” particles (CPR), i.e., the
particles with physical properties. Unlike our preceding
explorations we show fresh results with best-fit values for
adjustable parameters revisited.
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Some Recollections
In many textbooks on nuclear physics we encounter

H = K + V ,

K one-body operator of kinetic energy, interaction between nucleons

V =
N∑

i<j

V (i , j) +
N∑

i<j<k

V (i , j , k) + · · ·

with two-body V (i , j), three-body V (i , j , k) forces, etc.
(i , j , k = 1,2, · · · ,N).
The UCT method (Dubovik, E.A. and Shebeko, A.V. (2010) Few Body
Syst. 48 109; Shebeko, A. (2012) In: Advances in Quantum Field
Theory, ed. S. Ketov (InTech), P.3.) allows us to construct such
interactions on one and the same physical footing. In this respect, we
are starting with the Hamiltonian for Yukawa-type couplings between
π−, η−, δ−, ω−, ρ−, σ− mesons and nucleons(antinucleons).
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As an illustration,

Vs = gs

∫
d~x ψ̄(~x)ψ(~x)ϕs(~x) Vps = igps

∫
d~x ψ̄(~x)γ5ψ(~x)ϕps(~x)

Vv = V (1)
v + V (2)

v , V (1)
v =

∫
d~xHsc(~x), V (2)

v =

∫
d~xHnonsc(~x)

Hsc(~x) = gvψ̄(~x)γµψ(~x)ϕµv (~x) +
fv

4m
ψ̄(~x)σµνψ(~x)ϕµνv (~x)

Hnonsc(~x) =
g2

v

2m2
v
ψ̄(~x)γ0ψ(~x)ψ̄(~x)γ0ψ(~x)+

f 2
v

4m2 ψ̄(~x)σ0iψ(~x)ψ̄(~x)σ0iψ(~x)

ϕµνv (~x) = ∂µϕνv (~x)− ∂νϕµv (~x) tensor of vector field in Schrödinger (S)
picture.
Here we encounter scalar Hsc and nonscalar Hnonsc contributions to
interaction densities of ρNN and ωNN couplings

UF (Λ,a)Hsc(x)U−1
F (Λ,a) = Hsc(Λx + a)

UF (Λ,a)Hnonsc(x)U−1
F (Λ,a) 6= Hnonsc(Λx + a)

It requires a special consideration ...
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Method of UCTs in Action
Method in question is aimed at expressing a field Hamiltonian through
the so-called clothed-particle creation (annihilation) operators αc ,e.g.,
a†c(ac) [mesons], b†c(bc) [nucleons] and d†c (dc) [antinucleons] via
UCTs W (αc) = W (α) = exp R,R = −R† in similarity transformation

α = W (αc)αcW †(αc)

that connect primary set α in bare-particle representation (BPR) with the
new operators in CPR.
A key point of clothing procedure in question is to remove so-called bad
terms from Hamiltonian

H ≡ H(α) = HF (α) + HI(α) = W (αc)H(αc)W †(αc) ≡ K (αc),

By definition, such terms prevent physical vacuum |Ω〉 (H lowest eigenstate)
and one-clothed-particle states |n〉c = a†

c(n)|Ω〉 to be H eigenvectors for all n
included. In this context all primary Yukawa-type (trilinear) couplings shown
above should be eliminated.
At this point, one can address the so–called Belinfante ansatz

~Nbel = −
∫
~xH(~x)d~x

which is helpful for a simultaneous block diagonalization of Hamiltonian and
boost.7,37



Respectively, let us write for boson–fermion system

HI(α) = V (α) + Vren(α)

with primary (trial) interaction V (α) = Vbad + Vgood ”good” (e.g., ∈ [k .2]) as
antithesis of ”bad” while Vren(α) ∼ [1.1] + [0.2] + [2.0] ”mass renormalization
counterterms”. It turns out that latter are important to ensure RI as a whole,
i.e., in Dirac sense. In order to compare our calculations with those by Bonn
collaboration (Machleidt, Holinde, Elster) we have employed
V (α) = Vs + Vps + Vv. Then clothing itself is prompted by

H(α) = K (αc) ≡W (αc)[HF (αc) + Vv(αc) + Vren(αc)]W †(αc)

or

K (αc) = HF (αc) + V (1)
v (αc) + [R,HF ] + V (2)

v (αc)

+ [R,V (1)
v ] +

1
2

[R, [R,HF ]] + [R,V (2)
v ] +

1
2

[R, [R,V (1)
v ] + ...

and requiring [R,HF ] = −V (1)
v (*) for the operator R of interest to get

H = K (αc) = KF + KI

with a new free part KF = HF (αc) ∼ a†
cac and interaction

KI =
1
2

[R,V (1)
v ] + V (2)

v +
1
3

[R, [R,V (1)
v ]] + ...
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Moreover, after modest effort,
1
2

[
R,V (1)

v

]
(NN → NN) = Kv(NN → NN) + Kcont (NN → NN)

Operator Kcont (NN → NN) may be associated with a contact interaction
since it does not contain any propagators
(details see in Dubovik, Shebeko, FBS. 48 (2010)). It has turned out that this
operator cancels completely non–scalar operator V (2). Such a cancellation
is a pleasant feature of the CPR. In parallel, we have

~N(α) = ~B(αc) = W (αc){~NF (α) + ~NI(α) + ~Nren(α)}W †(αc)

with

~NI = −
∫
~xVv(~x)d~x = −

∫
~x{V (1)

v (~x) + V (2)
v (~x)}d~x = ~N(1)

I + ~N(2)
I

As before, we find that boost generator in CPR acquires structure similar to
K (αc)

~B(αc) = ~BF + ~BI .

Here ~BF = ~NF (αc) boost operator for noninteracting clothed particles (in our
case fermions and vector mesons) and ~BI incorporates contributions induced
by interactions between them

~BI = +
1
2

[R, ~N(1)
I ] +

1
3

[R, [R, ~N(1)
I ]] + ...
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Relativistic Interactions in Meson–Nucleon Systems
Interaction operators

KI ∼ a†
cb†

cacbc(πN → πN) + b†
cb†

cbcbc(NN → NN) + d†
c d†

c dcdc(N̄N̄ → N̄N̄)

+ b†
cb†

cb†
cbcbcbc(NNN → NNN) + ... + [a†

ca†
cbcdc + H.c.](NN̄ ↔ 2π) + ...

+ [a†
cb†

cb†
cbcbc + H.c.](NN ↔ πNN) + ...

Nucleon-nucleon interaction operator

KNN =

∫
d~p1d~p2d~p ′

1d~p ′
2VNN(~p ′

1, ~p
′
2;~p1, ~p2)b†

c(~p ′
1)b†

c(~p ′
2)bc(~p1)bc(~p2),

VNN(~p ′
1, ~p

′
2;~p1, ~p2) = −1

2
g2

(2π)3
m2√

E~p1
E~p2

E~p ′
1
E~p ′

2

δ(~p ′
1 + ~p ′

2 − ~p1 − ~p2)

×ū(~p ′
1)γ5u(~p1)

1
(p1 − p′

1)2 − µ2 ū(~p ′
2)γ5u(~p2),

Corresponding relativistic and properly symmetrized NN quasipotential is

ṼNN(~p ′
1, ~p

′
2;~p1, ~p2) =

〈
b†

c(~p ′
1)b†

c(~p ′
2)Ω | KNN | b†

c(~p1)b†
c(~p2)Ω

〉
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or through the Feynman-like ’propagators’ :

ṼNN(~p ′1, ~p
′
2;~p1, ~p2) = −1

2
g2

(2π)3
m2

2
√

E~p1
E~p2

E~p ′
1
E~p ′

2

δ(~p ′1 + ~p ′2 − ~p1 − ~p2)

× ū(~p ′1)γ5u(~p1)
1
2

{
1

(p1 − p′1)2 − µ2

+
1

(p2 − p′2)2 − µ2

}
ū(~p ′2)γ5u(~p2)− (1↔ 2). (*)

Formula (*) determines NN part of OBE interaction derived earlier via
Okubo-Glóckle-Múller transformation by Korchin, Shebeko [ Phys. At.
Nucl. 56 (1993) 1663 ] (cf. Fuda, Zhang. Phys. Rev. C 51 (1995) 23 )
taking into account pion exchange and heavy-meson exchanges.
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Distinctive feature of potential (*) is the presence of covariant
(Feynman-like) “propagator”,

1
2

{
1

(p1 − p′1)2 − µ2 +
1

(p2 − p′2)2 − µ2

}
.

On the energy shell for NN scattering, that is

Ei ≡ E~p1
+ E~p2

= E~p ′
1

+ E~p ′
2
≡ Ef ,

this expression is converted into genuine Feynman propagator. It is
typical of other meson-exchange interactions.
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Figure 1: The one-meson-exchange off-energy-shell graphs (upper) and
Feynman diagrams (lower) for NN scattering
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Potential B by Bonn group can be obtained from UCT quasipotentials
with help of replacements
I for boson propagators

[(p′ − p)2 −m2
b]−1 −→ −[(~p ′ − ~p)2 + m2

b]−1

I for cutoff functions[
Λ2

b −m2
b

Λ2
b − (p′ − p)2

]nb

−→

[
Λ2

b −m2
b

Λ2
b + (~p ′ − ~p)2

]nb

I omitting off–energy–shell correction in tensor–tensor term

fv2

4m2 (Ep′−Ep)2ū(~p ′)[γ0γν−g0ν ]u(~p)ū(−~p ′)[γ0γν−g0ν ]u(−~p) −→ 0
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Theory and Experiment

Table 1: The best-fit parameters for the two models.

Meson Bonn B UCT BONN UCT GS

π g2
π/4π 14.4 14.633 14.3868
Λπ 1700 2330.4317 2316.5957
mπ 138.03 138.03 138.03

η g2
η/4π 3 3.8712 4.7436
Λη 1500 1148.3563 1186.3328
mη 548.8 548.8 548.8

ρ g2
ρ/4π 0.9 1.5239 1.4905
Λρ 1850 1470.0933 1482.9515

fρ/gρ 6.1 5.4099 5.63504
mρ 769 769 769

ω g2
ω/4π 24.5 27.0059 27.0010
Λω 1850 2067.1625 2048.4847
mω 782.6 782.6 782.6

δ g2
δ/4π 2.488 1.8362 1.9911
Λδ 2000 2283.0762 2117.1415
mδ 983 983 983

σ, T = 0 (T = 1) g2
σ/4π 18.3773 (8.9437) 18.8026 (10.7836) 18.9937 (10.8998)
Λσ 2000 (1900) 1629.1474 (2123.1678) 1738.8244 (2145.0415)
mσ 720 (550) 722.22 (565.79) 723.64 (571.74)

Column UCT BONN (UCT GS) fits Bonn potential - Machleidt, R. Adv. Nucl.
Phys19(1989) (WCJ1 - Gross, F.&Stadler, A. Phys. Rev. C 78 (2008))
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Table 2: Deuteron and low-energy parameters. The experimental values are
from Table 4.2 of Ref. {Mach89}.

Parameter Bonn B G&S UCT BONN UCT G&S Experiment
as (fm) -23.685 -23.749 -23.695 -23.728 -23.748±0.010
rs (fm) 2.71 2.67 2.71 2.69 2.68±0.05
at (fm) 5.426 5.429 5.431 5.421 5.419±0.007
rt (fm) 1.761 1.766 1.769 1.755 1.754±0.008
εd (MeV) 2.222 2.222 2.223 2.222 2.224575
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On-Shell Calculations below the Pion Production
Threshold

Figure 2: Neutron-proton phase-shifts for the uncoupled partial waves vs the
nucleon kinetic energy in the lab. frame
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On-Shell Calculations below the Pion Production
Threshold

Figure 3: The same in Fig. 2 but for the coupled waves
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Off-shell effects
Here we show off-energy-shell R-matrices R(p′,p0) for first partial waves.
Recall that on-shell R-matrix elements R(p0,p0) are proportional to tanδ(p0).

Figure 4: Half-off-shell R-matrices for uncoupled waves at lab. energy equal
to 150 MeV (p0 =265 MeV)19,37



Figure 5: Deuteron wave functions ψd
0 (p) = u(p) and ψd

2 (p) = w(p).
Solid(dotted) curves for Bonn Potential B (UCT) potential.

Deuteron states normalized by
∫∞

0 p2dp
[
ψ2

0(p) + ψ2
2(p)

]
= 1.
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Clothed Particle Representation in the theory of
3N-systems
Likely the 2-body case the eigenvalue problem in the CPR can be
formulated projecting equation

H|Ψ〉 = E |Ψ〉, (1)

where the state |Ψ〉 belongs to 3N sector of Fock space as

〈123|H|Ψ〉 = EΨ(1,2,3). (2)

Here H = KF + KI with 2-body interactions KI and
Ψ(1,2,3) ≡ 〈123|Ψ〉. Doing so and taking into account that operators
bc destroy physical vacuum |Ω〉, i.e., bc |Ω〉 = 0, we obtain

(E1 + E2 + E3)Ψ(1,2,3) + 〈123|V1 + V2 + V3|Ψ〉 = EΨ(1,2,3) (3)

with Ei =
√

p2
i + m2, V1 = ṼNN(2,3),V2 = ṼNN(1,3), V3 = ṼNN(1,2) and

ṼNN(i , j) = −VNN(i ′ j ′; i j) + VNN(i ′ j ′; j i)− VNN(j ′ i ′; j i) + VNN(j ′ i ′; i j) (4)
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Remind also that, by definition, |123〉 = b†c(1)b†c(2)b†c(3)|Ω〉 and
operators bc meet commutation relations for fermions.
Moreover, we have the following transformation property with respect
to Poincarè group Π

UF (Λ,a)b†c(p, µ)U−1
F (Λ,a) = eiΛpaD(1/2)

µ′µ (W (Λ,p))b†c(Λp, µ′),

∀Λ ∈ L+ and arbitrary spacetime shifts a = (a0,a),

with D-function whose argument is Wigner rotation W (Λ,p),
L+ homogeneous (proper) orthochronous Lorentz group,
correspondence (Λ,a)→ UF (Λ,a) realizes unitary irreducible
representation of Π. This property allows one to get the
corresponding matrix elements in arbitrary frame.
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Triton Binding Energy
In the c.m.s. for Triton the Faddeev equation

|ψj〉 = G0Vj |Ψ〉, j = 1,2,3 (5)

with |Ψ〉 = |ψ1〉+ |ψ2〉+ |ψ3〉 and the resolvent

G0 = (MT − H0)−1 (6)

has been converted into the following

|ψj〉 = G0V q
j |Ψ〉, j = 1,2,3 (7)

where the V q
j is the so-called boosted potential .

H. Kamada, W. Glöckle, Phys. Lett. B 655 (2007)

Table 3: Triton binding energies of Kharkov potential versus other popular
solutions (in MeV)

Potentials Relativistic (Nonrelativistic) Difference
Kharkov (UCT Bonn) -7.799 ( -7.867) 0.068

Bonn -8.14
CD-Bonn -8.150(-8.248) 0.098
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Nucleon Momentum Distributions

Figure 6: Triton nucleon momentum distributions
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p-d scattering

I deuteron polarization observables
vector analyzing power: iT11, tensor analyzing power T20,T21,T22

I Potentials: CDBonn, Kharkov potential (UCT GS, UCT Bonn)

Boosted correction with equation

V q =
√

(Ep + V )2 + q2 −
√

(2Ep)2 + q2

and boosted relativistic LS eq.

t(p,p′; q) = V q(p,p′; q) +

∫
dk

V q(p,k; q)t(k,p′; q)√
(2Ep′)2 + q2 −

√
(2Ek )2 + q2 + iε

with Ep =
√

p2 + m2.
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Figure 7: iT11 as a function of angle θc.m. for proton incident energies 135
and 190 MeV
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Figure 8: iT20 as a function of angle θc.m. for proton incident energies 135
and 190 MeV
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Figure 9: iT21 as a function of angle θc.m. for proton incident energies 135
and 190 MeV
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Figure 10: Ay as a function of angle θc.m. for proton incident energies 135
and 190 MeV
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Figure 11: dσ
dΩ as a function of angle θ in c.m. for proton incident energy 135

MeV

32,37



Figure 12: dσ
dΩ as a function of angle θ in c.m. for proton incident energy 190

MeV
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Summary

I Starting from a total Hamiltonian for interacting meson and
nucleon fields, we come to Hamiltonian and boost generator in
CPR whose interaction parts consist of new relativistic
interactions responsible for physical (not virtual) processes,
particularly, in the system of bosons (π−, η−, ρ−, ω−, δ− and
σ−mesons) and fermions (nucleons and antinucleons).

I The corresponding quasipotentials (these essentially nonlocal
objects) for binary processes NN → NN, N̄N → N̄N, etc. are
Hermitian and energy independent. It makes them attractive for
various applications in nuclear physics. They embody the
off–shell and recoil effects (the latter in all orders of the 1/c2 -
expansion) without addressing to any off–shell extrapolations of
the S−matrix for the NN scattering.
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I 3N operators of b†cb†cb†cbcbcbc-type should be built consistently
with two-body ones. Such a work is underway.

I As a whole, persistent clouds of virtual particles are no longer
explicitly contained in CPR, and their influence is included in
properties of clothed particles (these quasiparticles of UCT
method). In addition, we would like to stress that problem of the
mass and vertex renormalizations is intimately interwoven with
constructing the interactions between clothed nucleons.
Renormalized quantities are calculated step by step in course of
clothing procedure unlike some approaches, where they are
introduced by ”hands”.
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◦ The best-fit values of adjustable parameters in the
Kharkov potential have been extracted from the n− p
scattering data by the fitting code elaborated in the
Department of Computational Physics at
Saint-Petersburg University, Russia.

◦ Numerical calculations with the Faddeev equations
were partially performed on the interactive server at
RCNP, Osaka University, Japan and on the
supercomputer cluster of the JSC, Jülich, Germany.
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