A NOVEL ALGORITHM FOR CALCULATING PROTON, NEUTRON, AND CHARGE NUCLEAR DENSITIES: COMPARISON WITH THE EXPERIMENTAL DATA

Oct 14, 2020, 3:30 PM
25m
Online

Online

Oral report Section 2. Experimental and theoretical studies of nuclear reactions. Section 2. Experimental and theoretical studies of nuclear reactions

Speaker

Olga Sukhareva (Omsk State Technical University)

Description

The Strong nucleus-nucleus Potential (SnnP) is of principal importance for understanding nuclear molecules [1] and for the synthesis of the superheavy nuclei [2]. Nucleon density distributions are known to play a crucial role in finding the SnnP by means of the double folding model [2], [3]. The best way is to calculate the densities in a microscopic manner, i.g. by the Hartree-Fock approach [4]–[6]. However, such calculations are rather complicated and computer resources consuming.
That is why in the present work we develop a novel fast algorithm for evaluating the proton and neutron densities for spherical nuclei. The algorithm is based on five benchmarking densities coming from the Hartree-Fock approach: $^{12}\mathrm{C}$, $^{16}\mathrm{O}$, $^{36}\mathrm{S}$, $^{92}\mathrm{Zr}$, $^{144}\mathrm{Sm}$, $^{208}\mathrm{Pb}$. Each of these microscopic densities is approximated by a combination of a Woods-Saxon profile with an exponential tail having a variable (i.e. radial dependent) diffuseness (WST profile). For the nuclei with the charge number between the benchmarking ones we perform a linear interpolation of the parameters defining the WST profile.
As a test for the WST-algorithm we find the nuclear charge density distributions for several spherical nuclei and compare those with the experimental Fourier-Bessel distributions from [7]. The agreement seems to be rather good.
Then we calculate the barrier height and radii for several fusion reactions involving two spherical nuclei using the well-known M3Y nucleon-nucleon interaction. The calculated barrier parameters are compared with the experimental ones from [8]. The calculated barriers are systematically higher than the experimental ones indicating importance of the dissipative phenomena in the above-barrier collision process [5], [6].

[1] W.Greiner et al. // Nuclear Molecules. WORLD SCIENTIFIC, 1995.
[2] В.И.Загребаев и др. // ЭЧАЯ. 38 (2007) 893–938.
[3] G.R.Satchler et al. // Phys. Rep. 55 (1979) 183–254.
[4] R.Bhattacharya // Nucl. Phys. A. 913 (2013) 1–18.
[5] I.I.Gontchar et al. // Phys. Rev. C. 89 (2014) 034601.
[6] M.V.Chushnyakova et al. // Phys. Rev. C 90 (2014) 017603.
[7] H.DeVries et al. // At. Data Nucl. Data Tables 36 (1987) 495–536.
[8] I.I.Gontchar et al. // Phys. Rev. C 69 (2004) 024610.

Primary authors

Olga Sukhareva (Omsk State Technical University) Maria Chushnyakova (Omsk State Technical University) Prof. Igor Gontchar (Omsk State Transport University) Dr Anna Klimochkina (Moscow State University)

Presentation materials