Potential Description of α+²⁰⁸Pb Elastic Scattering

<u>M Nure Alam Abdullah</u>, M Zahid Hasan, Sinthia Binte Kholil and Dipika Rani Sarker

Department of Physics, Jagannath University, Dhaka-1100 Bangladesh

LXX International Conference "NUCLEUS-2020. Nuclear physics and elementary particle physics. Nuclear physics technologies"

Nuclear scattering due to nuclear forces (to analyse the experimental angular distribution of the emitted particles)

Introduction

Nuclear potential

- The optical model (OM) potential is pretty well known to explain the • phenomena.
- Alpha-particle elastic scattering ALAS (Anomaly in Large Angle Scattering)
- ALAS is prominent but not unique to $A \approx 4n$ (n = 1, 2, 3, ...) nuclei and for A \leq 50.
- Beyond this region, the ALAS effect rapidly ٠ dies down giving rise to the "rainbow" scattering".

K.W. Kemper, A.W. Obst and and R.L. White, Phys. Rev. C 6 (1972) 2090. L. Jarczyk et al., Acta Phys. Pol. B 7 (1976) 53.

Introduction

Optical model (OM) potential

Phenomenological OM potential (obtained empirically from the direct analysis of the elastic scattering data)

(i) Woods-Saxon (WS)(ii) squared Woods-Saxon (SWS)

Problem suffer from discrete and continuous ambiguities

OM potentials is derived microscopically or semi-microscopically

(i) Folded (both double-folded and single-folded)

 (ii) non-monotonic (NM) - derived from the EDF theory of Brueckner, Coon and Dabrowski (BCD).

K.W. Kemper, A.W. Obst and R.L. White, Phys. Rev. C 6 (1972) 2090. *F. Michel et al, Phys. Rev. C* 28 (1983) 1904.

M. E. Brandan and G. R. Satchler Phys. Rep. 285 (1997) 143.
M. N. A. Abdullah et al, Eur Phys J. A 18 (2003) 65
M. N. A. Abdullah et al, Nucl. Phys. A 760 (2005) 40.
K. A. Brueckner, S. A. Coon and J. Dabrowski, Phys. Rev. 168 (1968) 1184.

Introduction

- Traditional double folded (DF) of effective N-N interaction and single folded (SF) of either α-N or α-α potentials need renormalizations at different incident energies.
- In 2003, we proposed a single-folding model the resulting potential from which does not need any renormalization.
- M. N. A. Abdullah et al., Eur. Phys. J. A 18 (2003) 65.
- M. N. A. Abdullah et al., Phys. Lett. B 571 (2003) 45.

M. N. A. Abdullah et al., Eur. Phys. J. A 18 (2003) 65

Our Folding Model

Assumptions:

- i. the nucleons in the target are considered primarily in the α -cluster configuration, and rest in an unclustered nucleonic configuration
- ii. the wave function of a nucleus can be considered as the product of wave functions of α -like configurations and those of unclustered nucleonic

of α -like configurations and those of unclustered nucleo configurations

iii. This leads to a sum of two folding potentials, one convoluted over α -density distribution and another over nucleonic density distribution.

MSF Potential

The modified single folded (MSF) real nuclear potential:

$$U(R) = \int \rho_{\alpha}(\vec{r}_{\alpha}) V_{\alpha\alpha}(\left|\vec{R} - \vec{r}_{\alpha}\right|) d^{3}\vec{r}_{\alpha} + \int \rho_{N}(\vec{r}_{N}) V_{\alpha N}(\left|\vec{R} - \vec{r}_{N}\right|) d^{3}\vec{r}_{N}.$$
(1)

$$\alpha - \alpha \text{ potential:} \quad V_{\alpha\alpha}(r) = V_R \exp(-\mu_R^2 r^2) - V_A \exp(-\mu_A^2 r^2).$$
 (2)

$$\alpha - N \text{ potential:} \quad V_{\alpha N}(r) = -V_0 \exp(-k^2 r^2). \tag{3}$$

The parameter values are:

 V_A = 122.62 MeV, μ_A = 0.469 fm⁻¹ [*B. Buck, H. Friedrich, C. Wheatley, Nucl. Phys. A 275 (1977) 241.*]

V₀ = 47.3 MeV and *K* = 0.435 fm⁻¹ [*S. Sack, L. C. Biedenharn, G. Breit, Phys. Rev.* 93 (1954) 321.]

Density distribution used:

$$\rho_i(r) = \rho_{0i} \left[1 + exp\left(\frac{r-c_i}{a_i}\right) \right]^{-1}, \text{ with } i = \alpha, N$$
(4)

MSF Potential

The Imaginary potential: W

potential:
$$W(R) = -W_0 \exp\left(-\frac{R^2}{R_W^2}\right).$$
 (5)

Coulomb potential:

$$V_{C}(R) = \begin{cases} \frac{Z_{1}Z_{2}e^{2}}{2R_{C}} \left(3 - \frac{R^{2}}{R_{C}^{2}}\right), & R \leq R_{C} \\ \frac{Z_{1}Z_{2}e^{2}}{2r}, & R > R_{C}. \end{cases}$$

(6)

with
$$R_c = 1.35 \times A^{1/3}$$
.

Normalization integral: $\int \rho_{\alpha}(\vec{r}_{\alpha})d^{3}\vec{r}_{\alpha} + \int \rho_{N}(\vec{r}_{N})d^{3}\vec{r}_{N} = 4A_{\alpha} + A_{N} = A_{T}$. (7)

The analytic form of the NM potential:

Real part:

$$V_{NM}(r) = -V_0 \left[1 + exp\left(\frac{r - R_0}{a_0}\right) \right]^{-1} + V_1 exp\left[-\left(\frac{r - D_1}{R_1}\right)^2 \right] + V_C(r)$$
(9)

The potential becomes non-monotonic with the inclusion of the second term.

Imaginary part: $W_{NM}(r) = -W_0 exp \left[-\left(\frac{r}{R_W}\right)^2 \right]$ $-W_S exp\left[-\left(\frac{r-D_S}{R_S}\right)^2\right].$ (10)

- Hossain *et al.* was able to explain the refractive structure of α+⁹⁰Zr elastic scattering using the NM potential derived from the EDF theory.
- The potential in the central region of the target nucleus seems to be significant in describing the α elastic scattering data on ⁹⁰Zr.

S. Hossain et al, J. Phys. G: Nucl. Part. Phys. 40 (2013) 105109.

Basak et al. successfully extended the approach of using the NM potential, derived from realistic two-nucleon (NN) а EDF the potential using method, to reproduce simultaneously

- the elastic scattering crosssections and
- the vector analyzing power data for ^{6,7}Li projectiles on ¹²C, ²⁶Mg, ⁵⁸Ni and ¹²⁰Sn
- without adjusting the shape or depth parameters of the EDF-derived potentials.

0.0 r

0.0 ⊢

A. K. Basak et al, Europhys. Lett. 94 (2011) 62002.

Strikingly, their analysis correctly described the observed opposite signs in the elastic scattering VAP data for ⁶Li and ⁷Li of the same energy incident on ⁵⁸Ni and ¹²⁰Sn nuclei.

These successes are attributed to the following features:

- (i) the NM nature of the central real potential arising from the use of the Pauli effect in the EDF theory
- (ii) optimum use of empirical absorption
- (iii) an appropriate choice of the effective SO potential of either sign, being a manifestation of the projectile excitation process.

Code used:

SCAT2 [O. Bersillon, The code SCAT2, NEA 0829, private communication.

SFRESCO which incorporates the coupled-channels code FRESCO 2.5 [*I. J. Thompson. Comp. Phys. Rep. 7 (1988) 167.*]

MINUIT [F. James and M. Roos, Comp. Phys. Commun. 10 (1975) 343.]

A set of parameters is obtained by minimizing χ^2 defined as:

$$\chi^{2} = \frac{1}{N} \sum_{i} \left[\frac{\sigma_{exp}(\Theta_{i}) - \sigma_{th}(\Theta_{i})}{\Delta \sigma_{exp}(\Theta_{i})} \right]^{2}.$$
 (8)

Results of MSF

Fig. 2. The predicted cross sections for the α +²⁰⁹Pb elastic scattering using the MSF potentials at E_{α} = 19.0-50.0 MeV. The open circles are the experimental data.

Results of MSF

Table 1. Energy independent parameters and the deduced results for α +²⁰⁸Pb elastic scattering. $\rho_{0\alpha}$ and ρ_{0N} are in fm⁻³; c_{α} , c_{N} , a_{α} = a_{N} and R_{rms} in fm.

Target	$ ho_{0lpha}$	$ ho_{{ m ON}}$	Cα	C _N	$a_{\alpha} = a_{N}$	$4A_{\alpha}$	A _N	A _T	R _{rms}
²⁰⁸ Pb	0.0347	0.192	6.62	3.0	0.546	180.0	28.0	208	5.514

Table 2. Energy dependent parameters along-with the volume integrals and χ^2 . E_a , and the depth parameters V_R and W_0 are in MeV; μ_R in fm⁻¹; R_W in fm; and $J_R/(4A)$ and $J_R/(4A)$ in MeV.fm³.

E_{α}	V_R	μ_R	W_0	R_W	$J_{R}/(4A)$	$J_{I}/(4A)$	χ^2
19.0	15.0	0.60	18.0	7.20	-397.4	-41.52	1.81
20.0	20.0		19.0		-391.1	-43.83	1.74
22.0	25.0		24.0		-384.8	-55.36	0.31
23.5	30.0		29.0		-378.4	-66.90	2.59
26.0	40.0		40.0		-366.0	-92.27	3.57
27.6	50.0		40.0		-353.5	-92.27	7.57
40.0	55.0		42.0		-347.2	-96.88	3.86
50.0	65.0		45.0		-328.5	-103.8	3.78

Results of NM

Fig. 3. The predicted cross sections for the α +²⁰⁹Pb elastic scattering using the NM potentials with unshifted repulsive core (green broken lines) and shifted repulsive core (red solid lines) at E_{α} = 19.0-50.0 MeV are compared to the experimental data (open circles).

Results of NM

Table 3. The real part of the NM potentials for the fits to the α +²⁰⁸Pb elastic scattering at $E_{\alpha} = 19.0 - 50.0$ MeV. V_0 and V_1 in MeV, and R_0 , a_0 , D_1 , R_1 and R_C in fm.

Set	V_0	R_0	a_0	V_1	D_1	R_1	R_C	$J_R/(4A)$
Set-1 $(D_1 = 0)$	11.49	7.674	0.2876	141.7	0.00	2.610	10.5	-100.0
Set-2 $(D_1 \neq 0)$	14.50	7.3648	0.3650	40.465	2.00	2.60	10.5	-100.0

Table 4. The imaginary parameters of the NM potentials for fits to the α +²⁰⁸Pb elastic scattering data. W_0 and W_s are in MeV; R_S , R_W , D_S in fm; $J_I/(4A)$ in MeV.fm³.

Ea	Set-1 $(D_1 = 0)$							Set-2 $(D_1 \neq 0)$						
	W_0	R_W	W_S	D_S	R_S	J _I /(4A)	χ^2	W_0	R_W	W_S	D_S	R_S	$J_{I'}(4A)$	χ^2
19.0	15.0	1.0007	5.20	6.450	1.5874	-99.45	0.014	10.0	1.0007	2.20	6.445	1.587	-42.35	0.0060
20.0							1.102							0.919
22.0							0.089							0.085
23.5							0.151							0.055
26.0	38.9	1.0409	2.75	6.3954	1.2946	-44.35	0.057	40.0					-44.45	0.115
27.6	129.5	1.0007	8.37	6.450	1.5874	-167.31	0.0617	25.0		3.20			-62.32	0.787
40.0			5.20			-107.06	0.376	32.0		3.20			-62.81	1.01
50.0			8.80			-175.16	1.896	30.0		5.20			-100.50	2.69

Discussion and Conclusions

- Both the MSF and NM potentials satisfactorily describe the α+²⁰⁹Bi elastic scattering data.
- However, the MSF potential slightly underestimates the cross sections at 27.6 MeV. This may be due to the lack of proper density parameters. To the best of our knowledge, there is no density distributions available in the literature for ²⁰⁸Pb and as so we have used density distribution of ²⁰⁷Pb.
- The derived MSF potential does not need any renormalization for a satisfactory description of the data over the entire energy range.
- The addition of the repulsive component conforms to the Pauli exclusion principle.
- The radius $c_N = 3.0$ fm of the unclustered nucleonic distribution is much less that $c_{\alpha} = 6.62$ fm of the α -like clusters.

Discussion and Conclusions

- In the case of NM potential, the fits are excellent using both unshifted repulsive core with $D_1 = 0$ and shifted repulsive core with $D_1 \neq 0$.
- However, the total χ^2 -value $(\sum_i \chi_i^2 = 3.747)$ for potentials with $D_1 = 0$ has been found to be lower than that $(\sum_i \chi_i^2 = 5.667)$ for potentials with $D_1 \neq 0$.
- The potential with $D_1 = 0$ and that with $D_1 \neq 0$ mainly differ in the central region of the target nucleus.
- From the closeness of the fits to the data and the nearly same χ^2 -value suggest that the scattering is dominated by potentials at nuclear surface.
- Thus the MSF and NM potentials have been proved to be successful in explaining the α elastic scattering on ²⁰⁸Pb.

THANK YOU FOR YOUR PATIENCE