Precision measurements of β-spectra 144Ce - 144Pr nuclei in order to define the spectrum of electron antineutrinos.

St. Petersburg Nuclear Physics Inst., NRC “Kurchatov Institute”, Gatchina, Russia

144Ce - 144Pr antineutrino source

The artificial source of antineutrinos 144Ce – 144Pr seems to be the most promising for the experiments on the search for neutrino oscillations to the sterile state.

<table>
<thead>
<tr>
<th>Q_E</th>
<th>Q_R</th>
<th>γ</th>
<th>E_{144Pr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>311.8</td>
<td>2997.5</td>
<td>133.5</td>
<td>669.5</td>
</tr>
<tr>
<td>185.2</td>
<td>2301.0</td>
<td>80.1</td>
<td>2155.7</td>
</tr>
<tr>
<td>236.8</td>
<td>811.8</td>
<td>41.0</td>
<td>1481.1</td>
</tr>
</tbody>
</table>

144Ce is fission fragment, 5% in spent fuel, 7.5 kW/Mci, 300 m/Mci, 3 PBq - 0.6 kW.

4β-spectrometer with two Si-detectors

Si(Li) detectors produced in PNPI with sensitive region 16 mm, thick 9 mm, [1]4=10 μA at 100 V. The low threshold of detected energy is 5 keV. The energy resolution measured with γ lines of 241Am is FWHM=1.1 keV. The response function of the spectrometer is close to Gaussian and does not contain a part associated with backscattering of electrons from the crystal surface, J. of Phys. 1390 (2019) 012117.

<table>
<thead>
<tr>
<th>Q_E</th>
<th>Q_R</th>
<th>γ</th>
<th>E_{144Pr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>311.8</td>
<td>2997.5</td>
<td>133.5</td>
<td>669.5</td>
</tr>
<tr>
<td>185.2</td>
<td>2301.0</td>
<td>80.1</td>
<td>2155.7</td>
</tr>
<tr>
<td>236.8</td>
<td>811.8</td>
<td>41.0</td>
<td>1481.1</td>
</tr>
</tbody>
</table>

Elastronics and DAQ system

Si(Li)-detector has two spectrometric channels: a preamplifier with resistive feedback, an amplifier with a time constant 2 μs.

Si(Li)-detector spectra with 207Bi

The Si(Li)-detector has two spectrometric channels: a preamplifier with resistive feedback, an amplifier with a time constant 2 μs and 14-bit ADC. Instr. Exp. Tech. 61, 323, 2018.

Fit of 144Pr β-spectrum and shape factor

Gaussian response function of 4β-spectrometer allows to directly measure the energy of electrons in β-decay and, accordingly, to determine the spectrum of electron antineutrinos. Parameters of shape factor are measured with 1% precision that is enough for new experiments with 144Ce-144Pr.

Spectra of 4π β-spectrometer

A - calibration with 232Bi. B - two-dimensional spectrum measured with 207Bi. The oblique lines correspond to backscattering of 570, 1084 and 1770 keV γ-quanta. The rectangles mark the events from the cascade of γ-quanta. C - 144Ce-144Pr source measured with a 4π β-spectrometer. 1 - total detected energy, 2 - events in only one detector, 3 - events registered by two detectors, 4 - coinciding events from one detector.

Transitions to the exited states of 144Nd

The measurement of the total energy electron spectrum practically solves the problem of antineutrino spectrum. The quality of the fit is tested by allowed transition 0$^+$$\rightarrow1^-$.
