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Strong CP-problem

non-observation of CP violation in strong interactions

The appearance of an axion in theory is connected with the problem of CP-violation
In strong interactions. The fact that QCD Lagrangian can be supplemented by term

representing the interaction of the gluon fields. ©-term is P and T odd, i.e. in strong
interactions should be observed CP violation.

D
g 2 _ 9
L@ — ®ﬁG§VGayv D
E.G. EDM of neutron is:
d ~6 X 10 ecm| |u-nrnio— 4]

Present experimental limit on nEDM:;

|d | <1.8X1026ecm (90% c.l)=> © <1010

As it follows from the experimental limit on neutron’s dipole moment the upper limit
on the CP-violating parameter is 8 < 1019, This term is very small in comparison
with all the other parameters of the QCD Lagrangian, and this fact still remains a
mystery over a few decades. O is one from 19-th free parameters of SM.




Emergence of axion

In order to solve this puzzle R. D. Peccei and H. R. Quinn in 1977 proposed the
concept of the new chiral symmetry U(1l)po. The spontaneous breaking of this
symmetry at the energy f, allows one to compensate CP-violating term of the QCD
Lagrangian completely. S. Weinberg and F. Wilczek showed (1978) that the introduced
PQ-model should lead to the existence of a new neutral pseudoscalar particle.

Yamor
Ly =(@-—)-3_GiG = oo
0 = 1:A)327z2 I

The axion mass (m,) and the strengths of an effective axion’s coupling to an electron
(dae), @ photon (g,, ) and nucleons (gay) are proportional to the inverse of f,.
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The name the "axion" is given by F. Wilczek on the brand of washing powder, since the axion

must to "clear" QCD from the problem of a strong CP-violation, and because of the connection
with the axial current.
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beightener The axion is a pseudoscalar; has the
same quantum numbers as the 7
and the same interactions, but with

coupling strengths scaled by the axion mass
“I named them after a laundry

detergent, since they clean up
a problem with an axial current.”

(Nobel lecture 2004)
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PQWW or “standard axion”

The original PQWW axion model contained certain strict predictions for the
coupling constants between an axion and photons (g,,), electrons (gpe),
and nucleons (g,,) because assumed that f, is equal to electroweak scale:

f, =(V2G.)"? = 250GeV

The standard axion mass depends on the number of quark doublets N and
unknown parameter X, which is the ratio of two Higgs vacuum expectation
values and it should be more:

m , (keV) =25N(X +1/X) > 150 keV

Existence of the WWPQ axion had been disproved by experiments
performed on reactors and accelerators, and by experiments with artificial
radioactive sources (decay channel A — y + y was searched for)
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Two classes of new theoretical models of an "invisible” axion

“Invisible” axion

retained

particle in the form required for solving the CP problem of strong
Interactions and at the same time suppressed it's interaction with matter:

1) “hadronic”, or KSVZ (Kim, Shifman, Vainshtein, Zakharov) axion
model that postulates existence of the additional heavy quark;

2) “GUT”, or DFSZ (Dine, Fischer, Srednicki, Zhitnycki) axion model

that requires additional Higgs field.

vz fems z ~ 6.0x10°
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The scale of Peccei-Quinn symmetry violation (f,) in both models is arbitrary and can be
extended up to the Plank mass = 10° GeV. The interaction strength scales as (f,)™*, and
the interaction between an axion and matter is suppressed. In contrast to the DFSZ axions,
the KSVZ axions have no coupling to leptons and ordinary quarks at the tree level, which
results in the strong suppression of the interaction of the KSVZ axion with electrons through
radiatively induced coupling. Moreover, in some variants of these models axion—photon
coupling may differ from the original DFSZ or KSVZ g,, couplings by a factor < 1072,




Axion interactions with y,e, N
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Interactions of axion with matter
depends on coupling constants
of the axion to the photons,
electrons and nucleons:

Jda
A — 2y decay é) and inverse

Primakoff (b) effect (axion-2-
photon conversion in the
electromagnetic field)

Jae

» axio-electric (c) and
compton-like (d) processes;

9aN _
eas a pseudoscalar particle

axion can be absorbed and
emitted In magnetic-type
transitions




Limits on axion-photon coupling constant g,,
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Astrophysical hints

1. dThe excessiveh_ trzansparenc(y Of) thl*? intergalactic ~ 10 E TN T T T T T T T T T T T 1T T T Ty T T 11
medium to very high energy (VHE) photons. HESS, 5 -
Fermi, Magic. Estimates give small ALP mass m, 10— 3 L
107 eV (to maintain coherence over sufficiently Ialgge = E
rlnoq Once;téc\:/ _Ile.ngths) and g,, coupling in the range 10% — 10'?:? Laboratory experiments (ALPS)
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2. The anomalous cooling rate of white dwarfs. These 2
arguments were used long ago to constrain gae and they 55 o
have been cross-checked and improved over the years. 10 ) o
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execes_swe cooling of WDs, RGs and HB stars can be TR (S VS (A (A (U U N U
explained at one stroke by an ALP coupling to electrons m_ (eV)
axon

and photons, with couplings |gAee| 1.5 x 10-13 and gAg : : :
1.4 x 10-11 GeV-1, respectively. Good fits to the data  ALPS - particles with zero spin and two-photon
can be obtained employing the DFSZ axion with a mass vertex, like the axion and there is no connection

in the range 4 meV - 250 meV between the coueling constantstand mass.



JAN

VY :
<] >
AA Solar axion spectra vs ga,, 9ae U dan
™ g,=10" ]|Themain sources of solar axions:
Bremstr. 1|1. Reactions of main solar chain. The most
» 1 |intensive fluxes are expected from M1l-
_100- Jpe=10 4 | transitions in 7Li and 3He nuclei (g y):
> Compton ]| ’Be + e — "Li*+y, 'Li" — "Li+A (478 kaB)
% p +d — 3He + A (5.5 MaB).
”g *He(5.5 MeV)| | 2. Magnetic type transitions in nuclei whose
o 10- 1 | low-lying levels are excited due to high
S ; 57
S Fe(14.4 keV) temperature in the Sun (°’Fe,®3Kr ) ()
3 3. Primakoff conversion of photons in the
- Li(a7s kev) | | | electric field of solar plasma (g ).
1-5 7| 4. Bremsstrahlung: e + Z(e) — Z + A. (Jae)
gAy_zlo'lo, 11 5. Compton process: y+e — e +A. (Ja)
Primakoft 1| 6. axio-recombination: e + | — I~ + A and
=keo.arev) ||| | | axio-deexcitation: I* — I + A. PRD 83 023505
0,1+ S frrr————— | (2011) CAST 1302.6283, 1310.0823
1 10 1000 . :
E,, keV 7.Plasmon-axion conversion. E<200 eV.

If axion does exist, the Sun should be an intense source of axions. The expected energy
spectrum of solar axions, like the spectrum of solar neutrinos, contains both continuous spectra
and monochromatic lines.There are 6(7) main axion formation processes inside the stars:




<? dl> A - -
Zaa Classification of experiments
Detection
94, Gan Gae
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conversion in by nuclei Si-, Ge-, Xe-atoms
magnetic field 169Tm  83Kr PNPI(SAXS), CUORE,
IAXO, CAST, EDELWEISS, XMASS,
_ PNPI, BAKSAN, XENON100
Tokyo Helioscope, LNGS




CAST - CERN Axion Solar Telescope
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The axis of the magnet IS directed to the Sun 6 hours dax (3 at sunrise and 3 at sunset)



CAST Results
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Year Phase Sensitivity Range The limit on gAg constant of an axion with a photon
2000 - 2003 Commissioning - turned out to be the most stringent among laboratory
2003 - 2004 Phase I (Vacuum) <0.02eV experiments. The CAST sensitivity turned out to be
2006 - 2007 Phase Il (Fe') 0.02eV-0.4eV sufficient to test only a small range of possible values of
2008 - 2011 Phase II (He®) 0.4eV-1.15eV _ _ _

2012 Phase II (He" - revisit) 0.02 eV - 0.4 eV axion parameters in the KSVZ and DFSZ axion models.




U\XO VAXO International Axion Observatory

-Length=20 m =
- Magnetised radius ~1 m
-Peakvalue ~54T
-Average inbore 25T
- Available T~ 4.5 K

4-th generation of axion helioscopes after CAST
with large-scale magnet which is >300 times larger
B2L%A than CAST magnet. Toroid geometry with 8
conversion bores of 60 cm diameter and 20 m long.
Detection systems is (XRT+detectors) scaled-up

versions based on experience in CAST. Low-
background techniques for detectors. Optics based
on slumped-glass technique used in NuStar. 50%
Sun-tracking time. Large magnetic volume
available for DM searches.
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U\XO M&' program 0' u’a 1904.09155v3
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IAXO will improve the experimental “helioscope frontier” by more than 1 order of magnitude in sensitivity to g,
More than 10* in terms of signal to noise ratio. IAXO will probe a large fraction of QCD axion models in the

meV to eV mass band. IAXO will fully or Iar(];elrly probe the ALP region invoked to solve the transparency
anomaly and stellar cooling anomaly. IAXO will partially explore viable QCD axion DM models.
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U\XO

Experiment Proposal to the DESY PRC

BabyIAXO: a first stage of the
International Axion Observatory IAXO
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Conceptual design by
CERN/ATLAS Magnet group (H.
ten Kate)

Free bore [m] m

Magnetic length [m]

Field in bore [T] 2.5
Stored energy [MJ] 27
Peak field [T] 4.1

Luiv unneusuis suunar w run JAXO bores 9 detection line representative of final
ones.

° New magnet configuration (saddle dipole). Potential to go to higher B.

° Test & improve all systems. Risk mitigation for full IAXO

° Produce relevant physics
° More staged access to funds
° Mover earlier to “experiment mode”

° Baby IAXO CDR finished. Moving to Technical Design
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Axioelectric effect in atoms
and resonant absorption by nuclei

Two special reactions with high cross sections:

The axioelectric absorption of axions by atoms is an analog of the photoelectric
effect. The reaction cross section is proportional to g,.* and o,

2 . 2 ,-.'Qf.?n
gh. 3E: (, B
(E4) = 3 Tomamz \1 ™
04e(Ea) B 16mam? ( 3 )

Photo effect crosssections are 4x10%2 cm?(C) - 4x102° cm?(Pb) at 10 keV

The cross section of the resonant absorption of the axions is given by an expression
similar to the one for the y —ray absorption and corrected by the w,/w, ratio

a(Eq) = Eﬁxp[—4{E-4 ,;EEM]_] (z%)
¥

where 0, Is the maximum cross section of the y -ray resonant absorption and [ =
1/1 . The experimentally obtained value of g,, for the >’Fe nucleus is equal to 2.56
x10718 cm? Due to huge c.s.

High sensitivity for g,, and g,y can be reached with a relatively small detector




Si(Li)-detector inside low-background setup

Scintillator 120 mm

r Cu 40 mm
Fe 35 mm

L 169Tm target
Si(Li)detecto

vA¢
Eart <IDQQI>

axions
<—

AW

coldfinger

In our experiment, we used a Si(Li) detector with a sensitive region diameter of 17
mm and a thickness of 2.5 mm (1.4 g). The detector was placed in a vacuum
cryostat was surrounded by 12.5 cm of copper and 2.5 cm of lead, which reduced
the background of the detector at an energy of 14 keV by a factor of 110. In order
to suppress the background from cosmic rays and fast neutrons, we used five
scintillators, which closed the detector almost completely except for the bottom
side, where a Dewar vessel with liquid nitrogen was placed. Measurements
continued for 76.5 days of live time in the form of two hour runs in order to control
the stability of the Si(Li) detector and active shielding scintillation detectors.




Search for axioelectric effect in Si-atoms
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The spectrum measured by Si(Li) detector.
Optimal fit and the expected spectrum in the
case of axions with m, =0 and g,, = 4 x 10-1°.
The upper limit on ga.: gae< 2.2x10-1° (90% c.l.)

The spectrum in (1-16) keV range. Optimal
fit for my, = 5 keV. The expected “axion”
spectrum is shown for m, = 5 keV and g,
= 5x1010,




Si(Li), XMASS, EDELWEISS, XENON, LUX, COSINE, CDEX, PANDA

)
10 LUX - 1704.02297 30 Jun 2017
. 1911.03085

Red giant
- Jpe < 3.0x10-83
10—13 | L JIJll.Il | 1 IIIIIII 1 1 IJlJJIl | 1 Lo rnl 1 | 1 0114
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m,, [keV/c?]

Upper limits on axion-electron coupling obtained with different detectors for DM particles
(WIMPSs) searches. Solar neutrino limit (<10% energy carried way by neutrinos) and RG limits
are shown. Stars in the red giant (RG) branch are particularly sensitive to axion-electron
processes due to gAe. In fact, it leads to an extension of the RG stars brightness in comparison

state-of-the-art stellar evolution theorx.
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(b) Solar axion
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Xenon coll. report results from searches for new r ¥2 i
physics with low-energy electronic recoil data 10°® . SR
. . -t = 3
recorded with the XENONI1T detector. With an __ - > ]
exposure of 0.65 ty. and an low background rate, %, 10} -
the data enables searches for solar axions, an & - ]
enhanced neutrino magnetic moment using solar . 1,3101;__ HE stars ]
neutrinos. The solar axion model has a 3.5 sigma © "z o E
. . p _Ai . 0 ey iy m"""'IUmevJ ]
significance, and a three-dimensional 90% o L2 [ .
confidence surface is reported for axion couplings to g 7 pest CENONIT
electrons, photons, and nucleons. This surface is F & (this work) 1
inscribed in the cuboid defined by g,, < 3.7x101? 1025 3 5 3 i =
and excludes g, = 0. Jae le—12
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Solar axions from pp-chain
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p + d — 3He + Axion (5.49 MeV)

®,(pd) = 054D, Y05, )’ (P, ,)

~3.3x10°(g;, )

e + 7Be —TLi*—7Li + A (478 keV)

D o (7B8) 2 0.1(D, 15 {0 + G) (P py)B
55X108(98\N +giN)2

The expected solar axion flux can thus be expressed in terms of the "Be- and pp-
neutrino fluxes, which are 4.9x10° and 6.0x10%° cm=2 s The fluxes depends on
gAN. The flux of 5.5 MeV axions is in 60 times more then 478 keV axions. The
additional advantage to look for 5.5 MeV axions is that a background level is lower
usually for higher energy. In Borexino 4 reactions were selected to detect axions.
The signature of all these reactions is a 5.5 MeV peak in the energy spectrum.
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xion detection via g,, and g,. cou

nling constants
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1. Primakoff conversion:

A+Z—->y+Z
on nuclei, E, = E, 7 Is
detected.

C.S. has a complex form,
CS for 5.5 MeV axions

Occ = 0a)/” X 4.7x10°%% cm?
at m,< 1 MeV
2. Axion decay:

A=y +y.

the axion lifetime is
I [s] =1/T=gp,*m,*641T =
0.8x10>(ga, [GeV1])? (M, [eV])?
and 7 have to be <500 s

1. Compton conversion:
A+e—-y+e.

both e and y are detected.

C.S. has a complex form,

the total CS for 5.5 MeV
axions

Occ = Qae? X 4.3x1025 cm?

at m,< 1 MeV

2. Axioelectric effect:
A+te+”Z—->Z+e.

Is analog of photo effect

CS is proportional Z> for C
atom

and E,=5.5 MeV

Opae = Ope’ X 1.3x10°2° cm?

For PC the AE CS is more than 4 orders of magnitude lower than for Compton process, so the
AE effect can not be taken into account. However, using the different energy dependence occ ~
E. 0a.~EA®? and Z° dependence, the AE effect is more effective to search for low energy
axions with detectors having high Z. We also consider the possible signals from the decay of
axion into two y-quanta and from Primakoff conversion on nuclei. The amplitudes of the
reactions depend on g,,. No statistically significant indications of axion interactions were found.
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Response function of Borexino detector

|
<
IH

1 — axioelectric effect

2 — Compton conversion
3 — Primakoff conversion
4 — Axion decay A—2y
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The Monte Carlo method has been

used to simulate the Borexino
response to electrons and y-quanta
appearing in axion interactions.
The response function of the
Borexino to the axion's was found
by MC simulations based on
GEANT4 code, taking into account
the effect of ionization quenching
| and the dependence of the
6 registered charge on the distance
E MeV from the detector's center.

counts/ 100 keV

10°

The uniformly distributed y's and e’s were simulated inside the inner vessel, but the response
functions were obtained for events restored inside the FV. The MC candidate events are
selected by the same cuts that was applied for real data selection. The signature of all
reactions is peak at 5.5 MeV energy.




Resonant excitation of nuclear levels

The axions can be produced when thermally excited nuclei (or excited due to
nuclear reactions) in the Sun relaxes to its ground state and could be detected
via resonant excitation of the same nuclide in a laboratory.

A

A 4

7Li, 57Fe, 83Kr, 169Tm ’Li, °’Fe, 83Kr, 199Tm

The monochromatic axions can excite the same nuclide in a laboratory,
because the axions are Doppler broadened due to thermal motion of the axion
emitter in the Sun, and thus some axions have suitable energy to excite the
nuclide.

The axions from Primakoff, Compton and Bremsstrahlung processes with wide
continues energy spectra can also excite low-lying levels of some nuclei.
169Tm
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DVQQ transition of ®3Kr nuclei (INR BNO + PNPI)

A search was carried out for 9.4 keV axions emitted in the M1 transition of 83Kr
nuclei on the Sun, using the resonance absorption reaction : A + 8Kr — 8Kr*—
8Kr +y (9.4 keV). To register y-quanta and electrons arising from the discharge of
the nuclear level, a proportional gas chamber filled with 99.9% enriched krypton-
83 and located in a low-background installation in the underground laboratory of
the Baksan Neutrino Observatory was used.
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Two proportional Kr-chambers with the first layer of passive protection. Spectrum of
the Kr camera measured over 613 days. Limits on gAy. Decay scheme and the

Andyrchi mountain, under which the BNO INR is located at a depth of 4800 m.
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v esonant absorption by %°Tm nuclei
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1-5 To search for 8.41 keV ys the planar Si(Li)
1| R~ 02, %@ detector with a sensitive area diameter of 66 mm
and a thickness of 5 mm was used.
R ~ g% X0%n _
o1 .' The detection probability of the axions is

O 2 4 6 8 10 12 |determined by the product g2, x92, and g2,

E,, keV xg?an Which is preferable for small g, values.
The search for resonant absorption of Primakoff, Compton and Bremsstrahlung solar
axions by 169Tm nuclei have been performed using Si(Li) detector and Tm target.
The expected axion count rate is proportional R ~ g2,, xg?,\ for Primakoff axions and

R ~ g%, Xg?, for Bremsstrahlung and Compton axions. P15 676 151 (2009) PRDS3, 0235058




Tm;Al:O,, cryogenic bolometer at 10 mK
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A search for resonant absorption of solar axions by %°Tm nuclei was carried out. A newly developed approach
involving low-background cryogenic bolometer based on Tm;Al;O,, crystal was used that allowed for
significant improvement of sensitivity in comparison with previous %°Tm based experiments. The
measurements performed with 8.18 g crystal during 6.6 days exposure yielded the following limits on axion
couplings: [g,,M|s2.31x1077 and : [ga.ma|<4.59%107° eV.




The existing upper limits on
Oae (90% c.l.).

1 — Tm;Al;O;, bolometer;

2 - Borexino;

3 - reactor;

VAV
»v&  Limits on axion-electron coupling g,., and m,
T T | | | T :/
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10‘ ACEAN o
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4 - accelerator;

5 - orthopositronium;

6 - LUX (solar);

7 - PANDA Il (DM);

8 - 0.1 from neutrinos;

9 - 169Tm + Si (Li) “target-
detector”;

10 - red giants;

11 - 83Kr, Baksan
(preliminary);

12 - Tm bolometer with an
exposure of 1 kg per year in
backgroundfree experiment.
13 - g, Values in DFSZ and
KSVZ axion models.




Limits on axion-photo coupling g,, and my,

The existing upper limits on
Ja, (90% c.l.).

1 — Tm3;Al;O,, bolometer;
2 a,b - Borexino;

3 - reactor;

4 - accelerator;

5 - 189Tm + Si (Li) “target-
detector”;

6 — Cosme, Solax, Dama;
7 - CAST,;

8 - telescopes;

9 - HB stars;

10 - red giants;

11 — SUSY and mirror
models;

12 - IAXO (project)

13 — Tm-bolometer with an
***Tm,1 kg y, B=0 exposure of 1 kg per year in
— background free experiment.

10° 10° 10’ |14-g,, valuesin DFSZ and

m,, eV KSVZ axion models.
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ADMX - microwave chamber 1 m in length and a diameter of 0.5 m with a strong
magnetic field. To search for relic axions ADMX experiment uses microwave
chamber with a strong magnetic field. Signal occurs when the resonant frequency
coincides with the mass of the axion. Search for axions is carried out by changing
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Laboratory axvons
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ALPs-1l at DESY using a HERA dipole magnet, Gammev at Fermilab using a Tevatron Magnet,
and OSQAR experiment at CERN using a LHC superconductive dipole magnet. The length of
magnets is planned to increase up to 100 m. The ALPS Il is an experiment currently being built
at DESY that will use a light-shining-through-a-wall approach to search for axion-like particles.
ALPS Il will use 24 superconducting dipole magnets,122m long optical cavities. The experiment
to achieve a sensitivity to the coupling between axion-like particles and photons down to gu, =
2x10-1GeV-1, more than three orders of magnitude beyond the sensitivity of previous laboratory
experiments. ALPSII will not achieve the IAXO sensitivity and it is model-free experiment.




Conclusion

Axion (and ALPs) simultaneously solve the CP problem of strong interactions and
are well-motivated candidates for dark matter. Perhaps the anomalous
transparency of the Universe for high-energy quanta and the rapid cooling of stars
are the first indications of their existence.

Currently, the IAXO (and babylAXO, TASTe) projects offer the most sensitive
laboratory experiment with solar neutrinos to the axion-photon g,, coupling
constant for a wide range of axion masses.

Searches for the axioelectric effect and resonant absorption for solar and relict
axions using neutrino and dark matter detectors have ruled out a new large region
of possible masses and coupling constants of the axion and ALPs. Searches for
resonant excitation of the 8.4 keV nuclear level of the *¥Tm nucleus in a Tm-
containing bolometer can significantly improve the sensitivity (up to two orders of
magnitude) to the axion coupling constants.
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Number of words neutrino and axion in
a title of' papers in arXiv.org
during last 5 years:

2016 2. 2017 2. 2018 2. 2019 2. 2020 a.
Neutrino 830 782 760 953 820
Axiomn 148 200 232 264 333
Al N 0.18 0.26 0.31 0.28 041

11.10.2020 Nucleus 2020, 11-17 Oct., 2020, St. Petersburg 36



Allowed and forbidden regions of m, (PDG2018)
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Axions + ALPs
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