Neutrino astrophysics with Borexino: comprehensive study of solar neutrinos

EVGENY LITVINOVICH
ON BEHALF OF THE BOREXINO COLLABORATION

NRC "KURCHATOV INSTITUTE"
NRNU "MEPHI"

NUCLEUS-2020
OCTOBER 12, 2020
Why study solar neutrinos: from solar physics to astrophysics and cosmology

- Solar surface spectroscopic observations demonstrated lower metal abundances. Do they indeed contradict to helioseismology?
 - Metallicity puzzle: do we correctly measure elemental abundances of stars?
 - Age, luminosity, temperature of stars do depend on metallicity
 - Do we correctly understand the opacity of stars?
 - Opacity defines star’s brightness, size, temperature
 - Consequences for the whole astrophysics
 - If we’re not perfectly aware of our own star, we’re probably wrong about the others…

- CNO cycle is believed to be dominant in most stars in the Universe
 - Experimental confirmation of the CNO cycle is highly required
Why study solar neutrinos: not only astrophysics... Neutrino itself!

- Solar neutrinos survival probability $P_{ee}(E_\nu)$ is sensitive to the physics beyond Standard Model.
- After establishing LMA MSW solution a set of sub-leading effects affecting neutrino propagation in the Sun is still possible:
 - Probe for the non-standard neutrino interaction (NSI)?
 - Mixing with sterile neutrino state?
 - Effect on P_{ee} largely depends on relation between Δm^2_{12} and $\Delta m^2_{\alpha\beta}$.
 - Large neutrino magnetic moments?
 - Neutrino decay?

Vacuum oscillations | Transition region | Matter-enhanced

Precision measurements of $P_{ee}(E_\nu)$, especially in transition zone between vacuum and matter-enhanced MSW-LMA regimes, would be a very powerful probe for the new physics.

Solar engine: neutrinos from pp-chain and CNO cycle

Solar neutrinos energy spectrum and fluxes in various solar models (SM)

<table>
<thead>
<tr>
<th>Flux</th>
<th>High-Z SM</th>
<th>Low-Z SM</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>5.98±0.6%</td>
<td>6.03±0.5%</td>
</tr>
<tr>
<td>pep</td>
<td>1.44±1.0%</td>
<td>1.46±0.9%</td>
</tr>
<tr>
<td>hep</td>
<td>7.98±30%</td>
<td>8.25±30%</td>
</tr>
<tr>
<td>7Be</td>
<td>4.93±6%</td>
<td>4.50±6%</td>
</tr>
<tr>
<td>8B</td>
<td>5.46±12%</td>
<td>4.50±12%</td>
</tr>
<tr>
<td>13N</td>
<td>2.78±15%</td>
<td>2.04±14%</td>
</tr>
<tr>
<td>15O</td>
<td>2.05±17%</td>
<td>1.44±16%</td>
</tr>
<tr>
<td>17F</td>
<td>5.29±20%</td>
<td>3.26±18%</td>
</tr>
</tbody>
</table>

Overall flux $\approx 6 \times 10^{10}$ cm$^{-2}$s$^{-1}$

7Be, 8B and CNO neutrino fluxes are most sensitive to solar metallicity

Units: 10^{10} (pp), 10^{9} (7Be), 10^{8} (pep, 13N, 15O), 10^{6} (8B, 17F), 10^{3} (hep) cm$^{-2}$s$^{-1}$.

The instrument: BOREXINO

- Detector takes data since 2007 in Gran Sasso national laboratories (LNGS, Italy), 3500 m.w.e.
- Primary detection channel: neutrino-electron elastic scattering
- 280 tons of PC-based liquid scintillator
 - $\sigma/E @ 1 \text{ MeV} = 5\%$
 - $\sigma_{x,y,z} @ 1 \text{ MeV} = 10 \text{ cm}$
- 2212 8” PMTs
- Active muon shielding
 - 2100 m3 ultra-pure water Cherenkov detector
- $E_{th} \approx 100 \text{ keV}$
Key ingredients of the Borexino success

- Extreme radiopurity achieved:
 - $^{238}\text{U} < 9.4 \times 10^{-20}$ g/g (95% C.L.)
 - $^{232}\text{Th} < 5.7 \times 10^{-19}$ g/g (95% C.L.)

- Brand new data analysis techniques, including:
 - Three-fold coincidence (TFC) technique to tag cosmogenic ^{11}C
 - e^+/e^- pulse-shape discrimination to further reduce cosmogenic ^{11}C
 - α/β discrimination based on neural network approach
Hunting for \textit{pp}-chain solar neutrinos
Data analysis strategy

- Latest results were obtained with the phase-II data taken in 2011-2016
- Event selection: a set of cuts is applied in order to maximize signal-to-background ratio
 - Remove cosmic muons and cosmogenics within 300 ms after muon, delayed coincidences $^{214}\text{Bi} - ^{214}\text{Po}$
- In order to suppress external background, events are required to be reconstructed within the fiducial volume:
 - $r < 2.8$ m and $-1.8 < z < 2.2$ m
- Two energy regions:
 - 0.19-2.93 MeV (pp, pep, ^7Be)
 - 3.2-16 MeV (^8B)
- Interaction rates are obtained by maximizing a binned likelihood function
Multivariate fit in 0.19÷2.93 MeV range

Method: binned likelihood fit through a multivariate approach:

\[
L(\vec{\theta}) = L_{E}^{TFC_{\text{sub}}}(\vec{\theta}) \cdot L_{E}^{TFC_{\text{tagged}}}(\vec{\theta}) \cdot L_{PS}(\vec{\theta}) \cdot L_{Rad}(\vec{\theta})
\]

Unknown parameters: pp rate, \(^{7}\text{Be} \) rate etc…

Energy spectrum \(^{11}\text{C} \) subtracted
Energy spectrum \(^{11}\text{C} \) tagged
Pulse shape parameter
Radial distribution
Multivariate fit in $0.19 \div 2.93$ MeV range

<table>
<thead>
<tr>
<th></th>
<th>Borexino rate [cpd/100 t]</th>
<th>High-Z predicted [cpd/100 t]</th>
<th>Low-Z predicted [cpd/100 t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pp</td>
<td>$134 \pm 10^{+6}_{-10}$</td>
<td>131.1 ± 1.4</td>
<td>132.2 ± 1.4</td>
</tr>
<tr>
<td>7Be</td>
<td>$48.3 \pm 1.1^{+0.4}_{-0.7}$</td>
<td>47.9 ± 2.8</td>
<td>43.7 ± 2.5</td>
</tr>
<tr>
<td>pep</td>
<td>$2.43 \pm 0.36^{+0.15}_{-0.22}$ (high-Z)</td>
<td>2.74 ± 0.04</td>
<td>2.78 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>$2.65 \pm 0.36^{+0.15}_{-0.24}$ (low-Z)</td>
<td>2.74 ± 0.04</td>
<td>2.78 ± 0.04</td>
</tr>
<tr>
<td>8B</td>
<td>$0.217 \pm 0.038 \pm 0.008$</td>
<td>0.211 ± 0.025</td>
<td>0.174 ± 0.022</td>
</tr>
</tbody>
</table>
High vs. low metallicity SSM after Borexino measurements

\[f_{Be} = \frac{\Phi(7Be)}{\Phi(7Be)_{\text{high-Z}}} \quad f_B = \frac{\Phi(8B)}{\Phi(8B)_{\text{high-Z}}} \]

Combined results. We take:
- precision Borexino measurements for 7Be neutrinos,
- more accurate Super-Kamiokande and SNO results for 8B neutrinos

Global fit performed with θ_{12} and Δm^2_{12} left free, $\sin^2 \theta_{13} = 0.02$ (fixed).

The discrimination between the high and low metallicity solar models is now largely dominated by theoretical uncertainties.
What about survival probability P_{ee}?

Borexino examines the MSW-LMA neutrino oscillation paradigm both in the vacuum (pp, 7Be-neutrino) and the matter dominated (8B-neutrino) regimes.

High-Z SSM B16(G98)
Low-Z SSM B16(AGSS09met)
Hunting for CNO cycle solar neutrinos
Spectral shapes of betas from CNO ν, pep ν and 210Bi are similar.

Hence, Borexino sensitivity to CNO neutrinos is low unless the 210Bi and pep ν rates are sufficiently constrained in the fit.

Strategy:
- constrain pep ν rate based on solar luminosity constraint coupled to SSM predictions on the pp to pep rate ratio plus the most recent oscillation parameters (1.4% accuracy) – J. Bergstrom et al., JHEP, 2016:132, 2016
- constrain 210Bi through its link to daughter 210Po (α). However:
 - The intrinsic value of 210Po rate is perturbed by the convective motions within the IV, caused the seasonal and man-made temperature change in the Hall C
 - Need thermal insulation in order to stop convective motions
Effort in reducing 210Po motion

- Double layer of mineral wool and active gradient stabilization system (2014-2016)
- 54 temperature monitoring probes (2014-2015)
- Fluid dynamical simulations showed very good agreement with measured temperatures
- Hall C temperature stabilization (2019)
Low Polonium field (LPoF)

Low Po field 20 m3 size from which we can infer the intrinsic ^{210}Po and hence ^{210}Bi – in agreement with fluid dynamical simulation

Reconstructed central position of LPoF over time for different methods

$R(^{210}\text{Bi}) \leq 11.5 \pm 1.3$ cpd/100 tons
Data analysis strategy

- Results were obtained with the phase-III data taken in 2016-2020
- Event selection: a set of cuts is applied in order to maximize signal-to-background ratio
 - Remove cosmic muons and cosmogenics within 300 ms after muon, delayed coincidences $^{214}\text{Bi}-^{214}\text{Po}$
- In order to suppress external background, events are required to be reconstructed within the fiducial volume:
 - $r < 2.8 \text{ m and } -1.8 < z < 2.2 \text{ m}$
- Data are analyzed in the energy region:
 - $0.32\div2.64 \text{ MeV}$
- Interaction rates are obtained by maximizing a binned likelihood function
Multivariate fit in $0.32 \div 2.64$ MeV range

210Bi and pep ν rates are constrained in the fit
CNO and other ν rates & backgrounds are free to vary

Final CNO result: Rate(CNO) = 7.2 (-1.8 +2.9) cpd/100 t.
Flux at Earth: = 7.0 (-1.9 +2.9) \cdot 10^8 cm$^{-2}$c$^{-1}$

No CNO hypothesis disfavored at 5σ.
Result corroborated by a simplified counting analysis

ROI corresponds to energy window which maximizes CNO signal to bkgd: 780 ÷ 885 keV

Rate(CNO) = 5.6 ± 1.6 cpd/100 t. (~3.5σ) – in agreement with the result, obtained through the multivariate fit approach

CNO neutrino rate negative log-likelihood profile directly from multivariate fit (dashed black line) and after accounting for systematic uncertainties (solid black line)
Publications

- Comprehensive study of 7Be neutrinos:
Summary

Borexino has completely unraveled the two processes powering the Sun: proton-proton chain and CNO cycle

- Several years long effort to thermally stabilize the detector has finally led to the first detection of CNO neutrinos with 5σ significance.

First hint to the solar metallicity puzzle delivered

- Combined Borexino plus other solar data indicate 2σ preference of high-Z solar models.

By measuring neutrinos produced in different reactions of pp-chain Borexino examines the MSW-LMA neutrino oscillation paradigm both in the vacuum and the matter dominated regimes.