Recent results from NA61/SHINE Seweryn Kowalski for the NA61/SHINE Collaboration, University of Silesia, Poland ### NA61/SHINE - Physics program - Strong interactions program - search for the critical point of strongly interacting matter - study of the properties of the onset of deconfinement - study high p_T particles production (energy dependence of nuclear modification factor) - Hadron-production measurements for neutrino experiments - reference measurements for the neutrino experiment for computing initial neutrino fluxes at J-PARC, FERMILAB - Hadron-production measurements for cosmic ray experiments - reference measurements of p+C, p+p, π +C, and K+C interactions for cosmic-ray physics (Pierre-Auger, KASCADE) for improving air shower simulations - measurement of Nuclear Fragmentation Cross Sections of intermediate mass nuclei needed to understand the propagation of cosmic rays in our Galaxy (background for dark matter searches with space-based experiments as AMS) ### NA61/SHINE - Acceleration chain - Primary beams: - Protons at 400 GeV/c - Ions (Ar, Xe, Pb) at 13A 150A GeV/c - Secondary beams: - Hadrons ($\pi^{+/-}$, $K^{+/-}$, anty-p) at 13 400 GeV/c - Ions (Be) at 13A 150A GeV/c ### NA61/SHINE - Experimental layout - Large acceptance hadron spectrometer - Beam particles measured in set of counters and position detectors - Tracks of charged particles measured in set of TPCs: measurement of *q*, *p* and identification by energy loss measurement - 3 Time of Flight Walls: identification via time of flight measurement - Projectile Spectator Detector measures the forward energy which characterizes centrality of collision - Vertex Detector (open charm measurements) - Forward TPC-1/2/3 www.us.edu.pl/en ### NA61/SHINE Performance $$\frac{\sigma(p)/p^2}{p^2} \approx 10^{-4} (GeV/c)^{-1}$$ $$\sigma(dE/dx) \approx 4\%$$ $$\sigma(ToF) \approx 100 \, ps$$ ### Centrality selection in ion collisions - Centrality is measured using Projectile Spectator Detector (PSD) - PSD is located on the beam axis and measures the forward energy E_F related to the noninteracting nucleons of the beam nucleus - Intervals in E_F allow to select different centrality classes 15 - 20% ### NA61/SHINE 2-dimensional scan NA61/SHINE performerd the 2D scan in **collision energy and system size** to study the phase diagram of strongly interacting matter www.us.edu.pl/en # Study of the onset of deconfinement: Particle production properties 0.1 9 ## Uniqueness of heavy ion results from NA61/SHINE ### NA61/SHINE recorded unique data for: - Onset of deconfinement - Onset of fireball - Critical point? - Two onsets in nucleus-nucleus collisions - Onset of deconfinement beginning of QGP formation - Onset of fireball beginning of formation of a large cluster which decays statistically www.**us.**edu.pt/en ### Onset of deconfinement: step and horn 2D kaon spectra for central (0-10%) Ar+Sc collisions collisions at 19*A*–150*A* GeV/*c* P. Podlaski, "Strangeness production at the CERN SPS energies," 2019. 18th International Conference on Strangeness in Quark Matter (SQM 2019), Bari, Italy. ### Onset of deconfinement: step Plateau – **STEP** – in the inverse slope parameter T of m_T spectra in Pb+Pb collisions observed at SPS energies. This is expected for the onset of deconfinement due to mixed phase of HRG and QGP (SMES). Qualitatively similar energy dependence is seen in p+p, Be+Be and Pb+Pb collisions Magnitude of T in Be+Be slightly higher than in p+p Ar+Sc results between p+p/Be+Be and Pb+Pb ### Onset of deconfinement: horn Rapid changes in K⁺/ π ⁺ – **HORN** – were observed in Pb+Pb collisions at SPS energies. This was predicted (SMES) as a signature of onset of deconfinement. ### Plateau like structure visible in p+p Be+Be close to p+p Ar+Sc is higher than p+p but for of energy dependence is similar to p+p (no horn) ### Onset of deconfinement: p+p data - Rates of increase of K+/π+ and T change sharply in p+p collisions at SPS energies. - The fitted change energy is ≈7 GeV close to the energy of the onset of deconfinement ≈8 GeV. PHYSICAL REVIEW C 102, 011901(R) (2020) ## Study of the onset of fireball # Onset of fireball: system size dependence www.us.edu.pl/en midrapidity $$p + p \approx Be + Be \neq Ar + Sc \leq Pb + Pb$$ - Onset of fireball – beginning of creation of strongly interacting matter with increasing nuclear mass number - Ar+Sc data are significantly higher than p+p~Be+Be results - Ar+Sc is closer to Pb+Pb than to smaller systems - Difference between Ar+Sc and Pb+Pb results is smaller for higher beam momenta # Onset of fireball: system size dependence - Onset of fireball beginning of creation of strongly interacting matter with increasing nuclear mass number - Ar+Sc data are significantly higher than p+p~Be+Be results - Ar+Sc is closer to Pb+Pb than to smaller systems - Difference between Ar+Sc and Pb+Pb results is smaller for higher beam momenta www.**us.**edu.pl/en # Pion production in Be+Be interactions $<\pi><W>$ in Be+Be interactions for low F follows Pb+Pb (Au+Au), while for top recorded collision energy it is close to N+N arXiv:2008.06277v2 [nucl-ex] 9 Oct 2020 # Search for critical point ### Critical point: Strongly intensive measures $\Sigma[P_T,N]$ Comparison to NA49 A+A at 158A GeV/c within NA49 two different acceptances System size dependence of $\Sigma[P_T, N]$ at 150/158A GeV/c: NA49 and NA61/SHINE points show consistent trends Eur.Phys.J. C77 (2017) no.2, 59, CERN-SPSC-2018-029 $$\begin{split} & \Sigma[P_{\mathrm{T}}, N] = \frac{1}{C_{\Sigma}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] + \langle P_{\mathrm{T}} \rangle \omega[N] - 2 \cdot \left(\langle P_{\mathrm{T}} \cdot N \rangle - \langle P_{\mathrm{T}} \rangle \langle N \rangle \right) \right] \\ & \Delta[P_{\mathrm{T}}, N] = \frac{1}{C_{\star}} \left[\langle N \rangle \omega[P_{\mathrm{T}}] - \langle P_{\mathrm{T}} \rangle \omega[N] \right], \qquad C_{\Sigma} = C_{\Delta} = \langle N \rangle \omega(p_{\mathrm{T}}) \end{split}$$ # Strangeness production in p+p at 158 GeV/c ### K*(892)⁰ production in inelastic p+p collisions Eur. Phys. J. C (2020) 80:460 ### Ξ production in inelastic p+p collisions at 158 GeV/c Results on Ξ production obtained by the NA61/SHINE set a new baseline for calculation of strangeness enhancement factors in A+A collisions # Ξ production in inelastic p+p collisions at 158 GeV/c - UrQMD fails to describe ratio - EPOS best description of the NA61/SHINE measurements ### *E*-(1860) pentaquark search in NA61/SHINE - 33M events - No *Ξ*⁻⁻(1860) signal - Ξ(1530) well visible PHYS. REV. D 101, 051101 (2020) # π^+/π^- ratio and spectator-induced electromagnetic effects - Spectators (in non-central collisions) follow their initial path with unchanged momenta; charged spectators generate electromagnetic fields - Charged pion trajectories can be modified by electromagnetic interactions (repulsion for π+ and attraction for π-) with the spectators → the effect is sensitive to the spacetime evolution the system - π+/π- ratio allows to study spectatorinduced electromagnetic effects → new information on the space and time evolution of the particle production process ### Spectator-induced electromagnetic effects EM-repulsion of π^+ and attraction π^- of is the strongest for pions with rapidities close to spectator (beam) rapidity and with low p_{τ} First observation of spectator induced EM effects in small systems at SPS Similar effect seen in intermediate centrality Ar+Sc (NA61/SHINE) and peripheral Pb+Pb (NA49) # NA61/SHINE beyond 2020 ### J/ψ production as the signal of deconfinement #### elementary p+p Open charm and J/ψ production within Matsui-Satz model [PL B178 416] #### Pb+Pb with QGP Medium reduces probability of J/ψ production $$P(c\overline{c} \to J/\psi) \equiv \frac{\langle J/\psi \rangle}{\langle c\overline{c} \rangle} \equiv \frac{\sigma_{J/\psi}}{\sigma_{c\overline{c}}}$$ $$P_{\text{vacuum}}(c\overline{c} \to J/\psi) > P_{\text{medium}}(c\overline{c} \to J/\psi)$$ ### NA61/SHINE program for 2021-2024 - What is the mechanism of open charm production? - How does the onset of deconfinement impact open charm production? - How does the formation of quark gluon plasma impact J/ψ production? To answer these questions **mean number** of charm quark pairs, $c\bar{c}$ produced in A+A collisions has to be known. Up to now corresponding experimental data does not exist and only NA61/SHINE can perform this measurement in the near future. ### Test measurements - open charm signal in A+A at 150 A GeV/c ### Detector upgrade during LS2 # Uniqueness of NA61 open charm program Landscape of present and future heavy ion experiments Only NA61/SHINE is able to measure open charm production in heavy ion collisions in full phase space in the near future - LHC and RHIC at high energies: measurements in small phase space due to collider geometry - RHIC BES collider: measurement not possible due to collider topology - RHIC BES fixed-target: measurement require dedicated setup, not under consideration - NICA (< 80AGeV/c): measurement during stage 2 under consideration - J-PARC (< 20AGeV/c): maybe possible after 2025 - FAIR (< 10AGeV/c): not possible at SIS-100 - NA61/SHINE planned in 2021 2024 ## Reference measurements: Nuclear fragmentation cross section for cosmic ray experiments - Primary cosmic rays from supernova remnants - Secondary cosmic rays from interactions with interstellar matter during propagation e.g. $$^{12}C + p \stackrel{frag.}{\rightarrow} B + X$$ $^{12}C + p \stackrel{frag.}{\rightarrow} ^{11}C + p \stackrel{decay}{\rightarrow} B + Y$ - Primary-to-secondary ratios (e.g. B/C) → traversed mass density - Unstable-to-stable ratios (e.g. ¹⁰Be/⁹Be) → traversed distance - Important for the understanding of origin of Galactic cosmic rays and backgrounds for DM searches Understanding of cosmic ray propagation limited by uncertainties of fragmentation cross sections NA61/SHINE will significantly reduce the uncertainties (from 20% to 0.5%) ### Test measurement - nuclear fragmentation cross section ### Direct ¹⁰B + ¹¹B production (preliminary) $$\sigma(^{12}{\rm C} + {\rm p} \rightarrow ^{10}{\rm B} + X) + \sigma(^{12}{\rm C} + {\rm p} \rightarrow ^{11}{\rm B} + {\rm X}) = \\ 47.7 \, \pm 3.0 \, \text{(stat.)} \, \pm 2.3 \, \text{(syst.)} \, \, \text{mb}$$ ### Reference measurements: Hadron production for neutrino experiments - Further improvement of the precision of measurements for the currently used T2K replica target, - Measurements for a new target material (super-sialon) for T2K-II and Hyper-Kamiokande, - Study of the possibility of measurements with beams <12 GeV/c for improved predictions of atmospheric and accelerator ν fluxes, - Ultimate hadron production measurements with prototypes of Hyper-Kamiokande and DUNE targets. NA61/SHINE will decrease systematic uncertainties on neutrino fluxes (for T2K-II, Hyper-K from 10% to 3%) # Neutrino-related accomplishments from NA61/SHINE first phase NA61/SHINE took thin and thick target data with 31 GeV/c protons specifically for T2K in 2007, 2009 and 2010 T2K flux predictions (Phys.ReV.D87 2013 no.1, 012001) currently uses thin target data and incorporation of thick target data is in progress #### 2016/17 data collection: • Thin target measurements with p and π beams at C, Be, Al targets at 30, 60 and 120 GeV/c #### 2018 data collection: - 120 GeV/c p on NOvA replica target provided by Fermilab - 18M events recorded ### Summary - 2D scan in system size and collision energy was completed in 2017 with Xe+La data - Analysis ongoing for p+p, Be+Be, Ar+Sc, Xe+La and Pb+Pb data - No horn in Ar+Sc collisions - Unexpected system size dependence : (p+p Be+Be) ≠ (Ar+Sc ≠ Pb+Pb) - No convincing indication of CP - Plans to extend NA61/SHINE program with measurements of open charm production in 2021 2024 ## Thank You **New Collaborators Welcome!!** Seweryn.Kowalski@us.edu.pl ## BACKUP ## Open charm yield as the signal of deconfinement confined matter - deconfined matter $${ m D\overline{D}}$$ mesons $ightarrow$ charm quarks $2m_{ m D}=3.7~{ m GeV}$ $ightarrow$ $2m_{ m c\overline{c}}=2.6~{ m GeV}$ $g_{ m D}=4$ $ightarrow$ $g_{ m c}=24$ Statistical Model of the Early Stage #### QCD-inspired calculations [Kostyuk, Gorenstein, Greiner PL B519 207] ### Mechanism of open charm and J/ψ production #### pQCD Gavai *et al.* IJMP A 10 2999. Braun-Munzinger, J. Stachel, PL B 490, 196. #### HRG, Quark Coalesc. Stat. Gorenstein, Kostyuk, Stoecker, Greiner, PL B 509, 277. #### Quark Coalesc. Dyn. Levai, Biro, Csizmadia, Csorgo, Zimanyi, JP G 27, 703 #### **SMES** Gazdzicki, Gorenstein, APP B30, 2705. Predictions for $< c\overline{c} >$ in central Pb+Pb at 158A GeV/c differ by a factor of about **50**. # Unique, multi-purpose facility to study hadron NA61/SHINGGEUS nad propose facility to study hadron hadron-nucleus and hadron-nucleus and hadron the study hadron the study hadron and hadron the study h ### UNIVERSITY OF SI E Casibility studies of open charm measurements in NA61/SHINE In 2016 Small Acceptance Vertex Detector was introduce to NA61/SHINE detector system: - 16 MIMOSA-26 sensors located on 2 horizontally movable arms - Target holder integrated ### UNIVERSITY OF SI FE as ibility studies of open charm measurements in NA61/SHINE ### Large Acceptance Vertex Detector - General requirements: - Precise vertex measurement (at the level of better ~20-30µm for particles) - Fast detectors (< 30 μs) with high granularity - The low material budget - Large acceptance is desirable to accept 100% of the D⁰s produced and to of NA61/SHINE - LAVD is planned on technology develop for ALICE ITS and MFT: - CMOS ALPIDE pixel sensors - Sensor size 15 mm x 30 mm. - Pixel pitch 29 μm x 27 μm. - Carbon fiber support structure - Read-out electronics - 4 stations, ### Replacement of the TPC electronics Will increase the read-out rate by a factor of about 10 (up to 1 kHz) ALICE will transfer to NA61/SHINE its present TPC electronics that will be replaced during the long shutdown LS2 Present NA61 Front-End Card ALICE Front-End Card ALICE Front-End Card on NA61 TPC ### Upgrade of the trigger and data acquisition Need for 1kHz readout frequency, # Open charm measurements after detector upgrade within the acceptance 10 days in 2021 (1kHz + LAVD) ≈ 40000 Do in 40 M events Results are plotted for the 0-20 % most central Pb+Pb collisions at 150A GeV/c and correspond to 4 million events. – 1 day of data taking ### Critical point: Strongly intensive measures A and Σ $$\Delta[P_{\scriptscriptstyle T},N] = \frac{1}{\omega[p_{\scriptscriptstyle T}]\langle N\rangle} [\langle N\rangle\omega[P_{\scriptscriptstyle T}] - \langle P_{\scriptscriptstyle T}\rangle\omega[N]] \qquad P_{\scriptscriptstyle T} = \sum_{i=1}^N p_{\scriptscriptstyle T\,i}$$ $$\Sigma[P_{\scriptscriptstyle T},N] = \frac{1}{\omega[p_{\scriptscriptstyle T}]\langle N\rangle} \big[\langle N\rangle \omega[P_{\scriptscriptstyle T}] + \langle P_{\scriptscriptstyle T}\rangle \omega[N] - 2 \left(\langle P_{\scriptscriptstyle T}N\rangle - \langle P_{\scriptscriptstyle T}\rangle \langle N\rangle \right) \big]$$ $$\omega[P_T] = \frac{\langle P_T^2 \rangle - \langle P_T \rangle^2}{\langle P_T \rangle} \qquad \omega[p_T] = \frac{\overline{p_T^2} - \overline{p_T^2}}{\overline{p_T}} \qquad \omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$ $$\omega[p_T] = \frac{\overline{p_T^2} - \overline{p_T^2}}{\overline{p_T}}$$ $$\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$$ $\Delta = \Sigma = 0$ for no fluctuations $\Delta = \Sigma = 1$ for Independent Particle Model - Δ[P_τ, N] uses only first two moments: $\langle N \rangle$, $\langle P_T \rangle$, $\langle P_T^2 \rangle$, $\langle N^2 \rangle$ - Σ[P_τ, N] uses also correlation term: $\langle P_{T}N \rangle - \langle P_{T} \rangle \langle N \rangle$ thus Δ and Σ can be sensitive to several physics effects in different ways #### Expected: non-monotonic behavior of CP signatures The picture assumes that conditions at chemical freeze-out of p+p and Pb+Pb are the same K* lifetime (≈ 4 fm/c) comparable with time between freeze-outs → Some resonances may decay inside fireball; momenta of their decay products can be modified due to elastic scatterings → problems with experimental reconstruction of resonance via invariant mass → #### Suppression of observed K* yield Assuming no regeneration processes (Fig.) time between freeze-outs can be determined from (STAR, PR C71, 064902, 2005): $$\frac{K^*}{K}(\text{kinetic}) = \frac{K^*}{K}(\text{chemical}) \cdot e^{\frac{-\Delta t}{\tau}}$$ use Pb+Pb or Au+Au ratio use p+p ratio Δt – time between kinetic and chemical freeze-outs τ – K*(892)⁰ lifetime = 4.17 fm/c; PDG, PR D98, 030001, 2018 www.**us.**edu.pl/en