Contribution ID: 101 Type: Oral report

Radiative capture in the ⁴He + ²H system in the framework of a microscopic approach

The nuclear ${}^4\text{He} + {}^2\text{H}$ system is of great importance to nuclear astrophysics. Radiative capture proceeding in this system is responsible for production of the ${}^6\text{Li}$ nuclei during the primordial nucleosynthesis. In this work, the ${}^4\text{He} + {}^2\text{H}$ radiative capture is considered from the microscopic viewpoint within a developed approach [1, 2] based on cluster aspects of nuclear structure and dynamics and formalism of expansions over the oscillator basis. Cross section and astrophysical S factor of the reaction are calculated. Low-energy dependence of these quantities serves as a source of information that can be useful for the so-called second "lithium puzzle". A comparison of the calculated results with experimental data is performed.

- 1. A.S. Solovyev and S.Yu. Igashov, Phys. Rev. C 96, 064605 (2017).
- 2. A.S. Solovyev and S.Yu. Igashov, Phys. Rev. C 99, 054618 (2019).

Primary author: Dr SOLOVYEV, Alexander (Dukhov Automatics Research Institute (VNIIA))

Presenter: Dr SOLOVYEV, Alexander (Dukhov Automatics Research Institute (VNIIA))

Session Classification: Will not participate

Track Classification: Section 2. Experimental and theoretical studies of nuclear reactions.