Probing fission fragments of $^{182,183}\text{Hg}$ nuclei at energies around coulomb barrier

- Mercury mass-asymmetry
- Deformed mercury isotopes $^{182,183}\text{Hg}$
- Experimental set-up
- Results and comparison
- Summary and outlook

Meghashree Cheralu House
FLNR, JINR, Dubna
Asymmetry region in Nuclear Chart

Figure. Calculated symmetric-yield to peak-yield ratios for 987 fissioning systems. Black squares (open in colored regions, filled outside) indicate β-stable nuclei. We find a new, contiguous region of asymmetric fission separated from the classical location of asymmetric fission in the actinides by an extended area of symmetric fission.

Asymmetric fission in Sub-Lead region

Calculations: courtesy P. Moller (LANL) and J. Randrup (LBNL)
Probability of asymmetric fission for deformed nuclei is higher compared to spherical nuclei.

- ^{182}Hg - Prolate $\delta \langle r^2 \rangle$ (-0.7)
- ^{183}Hg - Oblate $\delta \langle r^2 \rangle$ (-0.1).

Mean-square charge radii calculated with respect to $A=N+Z=198$.

Experimental details

- Experiment was conducted in FLNR CORSET setup, 40Ca beam extracted from U-400 cyclotron
- Energy - 172, 192, 212 and 244 MeV
- Energy resolution - 2%
- Target thickness:
 - 142Nd - 225 μg/cm2
 - 143Nd - 196 μg/cm2
- Carbon backing - 30 μg/cm2
- Beam Intensity - 80-100 nA
Experimental setup & Procedure

- Double-arm TOF (time-of-flight) CORSET spectrometer which functions on the basis of 2V method was used.
- Time resolution - 150 ps
- Angular resolution - 0.3°
- Position sensitive MCP’s are used to detect the particle in the stop detector.
- To analyse and process the data we use standard two-body kinematics.
- Energy losses due to start detector foil and target backing are taken into account during the data analysis.
Results for 182Hg
Results for ^{183}Hg
Mass distribution

- For 182Hg and 183Hg asymmetric peaks are observed at 81 and 101 (± 1).
- Asymmetric component contribution diminishes with increase in energy.
- No additional difference observed for 183Hg.
TKE distribution

VIOLA
- 143.2 MeV - 182Hg
- 143 MeV - 183Hg
Comparison of ^{182}Hg and ^{183}Hg fission mass distribution

- Largest deviation in yield is found for lab energy 212 MeV.
- We find appreciable agreement for lab energies 172 and 192 MeV.
Comparison with theory and previous experiment

\[{}^{40}\text{Ca} + {}^{142}\text{Nd} \rightarrow {}^{182}\text{Hg} \]

- Prasad et al. 33.6 MeV
- Moller et al. 20 MeV
- Moller et al. 40 MeV
- Current data 37 MeV
Summary & Outlook

- **Mass-TKE distributions** as we measured have been measured within 37-96 MeV excitation energy for $^{182,183}\text{Hg}$, populated using $^{40}\text{Ar}+^{142,143}\text{Nd}$ respectively.

- Our study indicates unique fission behavior, where prolate deformed nuclei shows identical result with oblately deformed nuclei and the result contradicts the previous observation of fission of deformed nuclei.

- Analysis was made using Rotational Liquid Drop and Double Gaussian model.

- At lab energy 244 MeV, where mass distribution is very wide, we are expecting fast-fission since the asymmetric contribution is low.

- Comparative analysis showed that only at lab energy 212 MeV the difference in the yield is higher compared to the rest of the energies yield difference.

- The presence and effect of deformation on the fission fragment mass distribution in higher excited energy needs to be investigated.

Thank you.
Collaboration

Cheralu M.\(^1\)*, Kozulin E.M.\(^1\), Itkis I.M\(^1\), Kumar D.\(^1\), Knyazheva G.N.\(^1\), Itkis M.G.\(^1\), Novikov K.V.\(^1\), Banerjee T.\(^1\), Kozulina N.I.\(^1\), Diatlov I.N.\(^1\), Pchelintsev I.V.\(^1\), Tikhomirov R.\(^1\), Vorobiev I.V.\(^1\), Pan A.N.\(^1,2\), Maiti M.\(^3\), Kumar Prajapar R.\(^3\), Kumar R.\(^3\), Sarkar G.\(^3\), Singh P.P.\(^4\), Sahoo R.N.\(^4\), Vardaci E.\(^5\), Andreev A.\(^6\), Mitu A.\(^7\), Harca I.\(^7\), Trzaska W.H.\(^8\)

\(^1\)*Joint Institute for Nuclear Research, Dubna, 141980 Russia
\(^2\)Institute of Nuclear Physics, Almaty, Kazakhstan
\(^3\)Department of Physics, Indian Institute of Technology Roorkee, Roorkee, India
\(^4\)Department of Physics, Indian Institute of Technology Ropar, Punjab, India
\(^5\)Dipartimento di Scienze Fisiche and INFN, Napoli, Italy
\(^6\)Department of Physics, University of York, York YO10 5DD, UK
\(^7\)IFIN-HH, Bucharest - Magurele, Romania
\(^8\)Department of Physics, University of Jyvaskyla, Finland
Comparison

<table>
<thead>
<tr>
<th>Reaction</th>
<th>$E_{\text{lab}}, \text{MeV}$</th>
<th>E_{cm}/E_B</th>
<th>E^*, MeV</th>
<th>$\langle l \rangle$ (\hbar)</th>
<th>σ_M (amu)</th>
<th>σ_E (amu)</th>
<th>L_{cr}, \hbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{40}\text{Ca} + ^{142}\text{Nd} \rightarrow ^{182}\text{Hg}$ ($L(B_f=0) = 69 , \hbar$) $TKE_{\text{Viola}} = 143.2 \text{ MeV}$</td>
<td>172</td>
<td>0.97</td>
<td>37</td>
<td>9</td>
<td>9</td>
<td>9.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>192</td>
<td>1.08</td>
<td>52</td>
<td>30</td>
<td>10.2</td>
<td>10.1</td>
<td>49±6</td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>1.19</td>
<td>68</td>
<td>46</td>
<td>11.2</td>
<td>11.4</td>
<td>67±7</td>
</tr>
<tr>
<td></td>
<td>244</td>
<td>1.37</td>
<td>93</td>
<td>62</td>
<td>15.4</td>
<td>12.9</td>
<td>87±10</td>
</tr>
<tr>
<td>$^{40}\text{Ca} + ^{143}\text{Nd} \rightarrow ^{183}\text{Hg}$ ($L(B_f=0) = 70 , \hbar$) $TKE_{\text{Viola}} = 143 \text{ MeV}$</td>
<td>172</td>
<td>0.97</td>
<td>39</td>
<td>10</td>
<td>9.6</td>
<td>9.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>192</td>
<td>1.08</td>
<td>55</td>
<td>32</td>
<td>10.26</td>
<td>10.1</td>
<td>50±7</td>
</tr>
<tr>
<td></td>
<td>212</td>
<td>1.19</td>
<td>71</td>
<td>48</td>
<td>14.2</td>
<td>11.5</td>
<td>68±8</td>
</tr>
<tr>
<td></td>
<td>244</td>
<td>1.37</td>
<td>96</td>
<td>66</td>
<td>15.6</td>
<td>13.6</td>
<td>88±10</td>
</tr>
</tbody>
</table>
Asymmetric fission in Mercury

Asymmetric mass distribution was observed in spite of a mass symmetric split that could lead to two ^{90}Zr fragments, with magic $N=50$ & semimagic $Z=40$.

$^{180}_{80}\text{Hg}_{100} \rightarrow ^{90}_{40}\text{Zr}_{50} + ^{90}_{40}\text{Zr}_{50}$?
