PROPERTIES OF COLLECTIVE STATES OF ISOTOPES ¹⁵⁶Gd

P. N. Usmanov^{a,*}, A. I. Vdovin^b, E. K. Yusupov^a

 ^a Namangan Institute of Engineering and Technology, Namangan, Uzbekistan
 ^b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow oblast, Russia
 *e-mail: usmanov1956.56@mail.ru

Introduction

The gadolinium isotope with a mass A=156 is one of the most studied nuclei. The main reason is the large cross section (n,γ) reaction in ¹⁵⁶Gd, which provides big opportunities for studying the emission spectra in this reaction. Full results on this nucleus are given in references [1,2]. Several other nuclear processes supplement information on the levels and rotation bands in ¹⁵⁶Gd. In the reaction of $(\alpha, 2n)$ data were obtained on the states of rotational bands with $K^{\pi} = 0_1^+$ to $I = 26^+$, $K^{\pi} = 0_2^+$ to $I = 14^+$, $K^{\pi} = 0_3^+$ to $I = 10^+$, $K^{\pi} = 0_4^+$ to $I = 6^+$, $K^{\pi} = 0_5^+$ to $I = 4^+$, $K^{\pi} = 2_1^+$ to $I = 15^+$ and $K^{\pi} = 2_2^+$ to $I = 4^+$.

In the present work, the having the experimental information of the rotational bands of ${}^{156}Gd$ is discussed. And also influence of mixture of K^{π}=0⁺, 2⁺, and 1⁺ bands to the energy levels and reduced probabilities of *E*2– transitions and their ratio to nuclides of ${}^{156,158,160}Gd$ is discussed are analysed.

1 Model

To analyze the properties of low–lying positive parity states in Gd isotopes, the phenomenological model of [3] is used. This model takes into account the mixing of states of the gr-, $\beta-$, $\gamma-$ and $K^{\pi} = 1^{+}_{\nu}$ bands. The Hamiltonian model is

(1)

(2)

$$H = H_{rot} + H_{KK'}$$

$$H_{KK'} = \omega_K \delta_{K,K'} - \omega_{rot}(I) \cdot (j_x)_{KK'} \chi(I,K) \delta_{K,K'+1}$$

where $(j_x)_{K,K'} = \langle K | j_{[} | K' \rangle - \text{ is the matrix element of the Coriolis coupling of the rotational band members, <math>\omega_{rot}(I) - \text{ is the rotational frequency of the core}$ $(\omega_{rot}(I) = dE_{cor}(I)/dI), \omega_K - \text{ is the energies of the band heads, and}$

$$\chi(I,0) = 1$$
, $\chi(I,1) = \left[1 - \frac{2}{I(I+1)}\right]^{\frac{1}{2}}$.

The eigenfunction of Hamiltonian model (1) reads

The Eigen wave function of Hamiltonian is

$$IMK \rangle = \sqrt{\frac{2I+1}{16\pi^2}} \left\{ \sqrt{2}\Psi^{I}_{gr,K} D^{I}_{M,0} \left(\theta\right) + \sum_{K'} \frac{\Psi^{I}_{K',K}}{\sqrt{1+\delta^{(3)}_{K',0}}} \times \right\}$$

$$\times \left[D_{M,0}^{I}(\theta) b_{K'}^{+} + (-1)^{I+K'} D_{M,-K'}^{I}(\theta) b_{-K'}^{+} \right] \right\} |0\rangle$$

(4)

where $\Psi_{K',K}^{I}$ - is the amplitudes of basis states mixture. The states consist of $(4+\nu)$ bands, where ν - is the number of included 1^{+} - states. It includes ground $|0\rangle$ state bands and the single phonon $b_{\lambda-2,K}^{+}|0\rangle = b_{K}^{+}|0\rangle$ with $K^{\pi} = 0_{m}^{+}, 2_{\ell}^{+}$ and $K^{\pi} = 1_{\nu}^{+}$ - rotational bands.

By solving the Schrödinger equation

$$H_{K,n}^{\sigma}\Psi_{K,n}^{I} = \varepsilon_{n}^{\sigma}\Psi_{K,n'}^{I}$$

we obtained wave function and energy of states with positive parity.

The energy of states is defined by equation

$$E_n^{\sigma}(I) = E_{rot}(I) + \varepsilon_n^{\sigma}(I).$$
⁽⁵⁾

Where energy of rotational core $E_{rot}(I)$ can be determine by different methods, for example, by Harris parameterization [4] of the angular moment and energy.

$$\sqrt{I(I+1)} = \mathfrak{I}_0 \omega_{rot}(I) + \mathfrak{I}_1 \omega_{rot}^3(I)$$

$$E_{rot}(I) = \frac{1}{2} \mathfrak{I}_0 \omega_{rot}^2 + \frac{3}{4} \mathfrak{I}_1 \omega_{rot}^4(I)$$
(6)
(7)

Where \mathfrak{T}_0 and \mathfrak{T}_1 – parameters of inertia of rotational core. The rotational frequency of the core $\omega_{rot}(I)$ is found by solving cubic equation (7). This equation has two imaginary roots and one real root. The real root is

$$\omega_{rot}(I) = \left\{ \frac{\tilde{I}}{2J_1} + \left[\left(\frac{J_0}{3J_1} \right)^3 + \left(\frac{\tilde{I}}{2J_1} \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{2}} + \left\{ \frac{\tilde{I}}{2J_1} - \left[\left(\frac{J_0}{3J_1} \right)^3 + \left(\frac{\tilde{I}}{2J_1} \right)^2 \right]^{\frac{1}{2}} \right\}^{\frac{1}{3}}$$
(8)

where $I = \sqrt{I(I+1)}$. Equation (8) gives $\omega_{rot}(I)$ at the given spin *I* of the core

The matrix elements of Coriolis mixture of rotational band states $(j_x)_{K,K'}$ and bandhead energy of gamma band (ω_{γ}) , where determined by fitting the calculated energy spectra with positive parity states from experimental data. In this case $(j_x)_{K,1_1} = (j_x)_{K,1_2}$ are equal each other. The value of parameters of calculation is given in Table 1.

\mathfrak{I}_0	\mathfrak{I}_1	ω ₂₁	ω ₂₂	$\langle 0_1 \hat{j}_x 1_v^+ \rangle$	$\langle 0_2 \hat{j}_x 1_v^+ \rangle$	$\langle 0_3 \hat{j}_x 1_V^+ \rangle$	$\langle 0_4 \hat{j}_x 1_v^+ \rangle$	$\langle 0_5 \hat{j}_x 1_v^+ \rangle$	$\langle 2_1^+ \hat{j}_x 1_v^+ \rangle$	$\langle 2_2^+ \hat{j}_x 1_V^+ \rangle$
33.3	169.47	1.076	1.739	0.416	0.45	0.25	0.91	0.42	0.40	0.1

NOTE; $\Im_0(\hbar/MeV)$, $\Im_1(\hbar^4/MeV^3)$ are the inertial parameters of rotating core (Harris parameters), $\omega_{2_{1,2}}$ (MeV) are energies of the $K^{\pi} = 2^+_{1,2}$ band heads, and $\langle K | \hat{j}_x | K' \rangle$ (MeV) are the matrix elements of the Coriolis interaction.

The comparison of theoretical and experimental data of energy spectra for the ^{156}Gd isotopes are given in *Figures 1* respectively.

Electrical Quadrupole γ - transitions

Electromagnetic transitions are important to understood the nature and analysis the various modes of nuclear excitations.

Using the wave functions which is calculated by solving the Schrodinger Eq. (4), we can calculate E2– transitions from the $|I_iK_i\rangle$ state to the level of ground band states $|I_f 0_1\rangle$.

The formula of reduced probabilities of E2– transitions is follows as

$$B(E2; I_i K_i \to I_f 0_1) = \frac{1}{2I_i + 1} \left| \left\langle I_f 0_1 \| \hat{m}(E2) \| I_i K_i \right\rangle \right|^2 \tag{9}$$

where $\hat{m}(E2)$ is matrix element the operator of electric quadrupole transitions and it is obtained as

$$\left\langle I_{f} 0_{1} \| \hat{m}(E2) \| I_{i}K_{i} \right\rangle = \sqrt{2I_{i}} + 1 \left\{ \sqrt{\frac{5}{16\pi}} Q_{0} \left[\Psi_{0_{1},0_{1}}^{I_{f}} \Psi_{0_{1},K_{i}}^{I_{i}} C_{I_{i}0;20}^{I_{f},0} + \sum_{n} \Psi_{K_{n},0_{1}}^{I_{f}} \Psi_{K_{n},K_{i}}^{I_{i}} C_{I_{i}K_{n};20}^{I_{f}K_{n}} \right] + \sqrt{2} \left[\Psi_{0_{1},0_{1}}^{I_{f}} \sum_{n} \frac{(-1)^{K_{n}} m_{K_{n}}}{\sqrt{1 + \delta_{K_{n},0}}} \Psi_{K_{n},K_{i}}^{I_{i}} C_{I_{i}K_{n};2-K_{n}}^{I_{f},0} \right] + \Psi_{0_{1},K_{i}}^{I_{i}} \sum_{n} \frac{m_{K_{n}}}{\sqrt{1 + \delta_{K_{n},0}}} \Psi_{K_{n},0_{1}}^{I_{f}} C_{I_{i}0;2K_{n}}^{I_{f}K_{n}} \right]$$

where m_{K_n} in Eq. (10) is matrix elements between intrinsic wave function of ground bands $K_{\nu}^{\pi} = 0_1^+$ and other state bands, which is including to the basis state of Hamiltonian (1), $Q_0 -$ intrinsic quadrupole moment of nuclei and $C_{I_i K_i; 2K_i + K_f}^{I_f K_f}$ – is a Clebsch – Gordon coefficients. In the adiabatic approximation, the following equations are valid for B(E2) factors from the states of the β - and γ - bands:

$$B^{rot}(E2;I_i\beta \to I_f gr) = \left| m_0 C_{I_i0;20}^{I_f 0} \right|^2 \tag{11}$$

$$B^{rot}(E2; I_i \gamma \to I_f gr) = 2 \left| m_2 C_{I_i 2; 2-2}^{I_f 0} \right|^2$$
(12)

The Coriolis mixture do not played important rule in low spin I=2 and the values of parameters m_{β_1} , m_{β_2} and m_{γ} can be obtained from the adiabatic formula (11) and (12).

The comparison of theoretical calculation and experimental data of reduced probabilities of B(E2)- transitions between the different state bands to the ground bands is given in Table 3.

Table 2. The values of the parameters m_K and the internal quadrupole moment Q_0 used in the calculations for the isotopes ${}^{156}\text{Gd}$ (in units of $e\text{Fm}^2$).

Q_0 [6]	$m_{0_{2}}$	m_{0_3}	m_{0_4}	$m_{0_{5}}$	$m_{l_{\nu}}$	m_{2_1}	m_{2_2}
687	-14.0	14.4	10.0	-2.0	-13.0	25.0	8.0

Table 3. The reduced probabilities of E2 – transitions from states $K^{\pi} = 2_1^+ - 0_2^+ - and 0_3^+ - bands$.

$I_i K_i$	$I_f K_f$	$B(E2; I_i K_i \rightarrow I_f K_f), e^2 Fm^4$						
l l	5 5	exp.	exp. [1]	exp. [8]	This work			
2+21	0+01	222(11) [5,6]	233(8)	175(35)	237			
2+21	2+01	355(19) [5,6]	361(13)	255(55)	354			
2+21	4+01	32(3) [5,6]	38(2)	40(9)	43			
3+21	2+01	364(17) [6,7]	364(70)	385(75)	379			
3+21	4+01	280(60) [6,7]	255(50)	255(45)	264			
4+21	2+01	78(9) [6,7]	90(+20-25)	95(25)	151			
4+21	4+01	460(50) [6,7]	509(+115-145)	565(155)	346			
5+21	4+01	295 [6,7]	399(+1000-250)	500(380)	283			
5+21	6+01	410(40) [6,7]	549(+1700-400)	745(565)	369			
2+02	0+01	31,6(18) [5,6]	31,4(30)	43(15)	51			
2+02	2+01	164(16) [6,7]	165(15)	235(75)	106			
2+02	4+01	181(17) [6,7]	205(20)	275(95)	33			
4+0 ₂	2+01	61(7) [6,7]	65(+25-35)	79(32)	81			
4+0 ₂	4+01	140(13) [6,7]	-	159(61)	162			
4+0 ₂	6+0 ₁	91(14) [6,7]	105(+35-55)	130(50)	5			
2+03	0+01	15,4(14) [5,6]	15,4(2)	11(4)	25			
2+0 ₃	2+01	8,4(+24-19) [6,7]	21(+3-2)	4.3(17)	57			
2+03	4+01	210(25) [6,7]	215(25)	153(58)	153			
4+03	2+01	15(4) [6,7]	-	-	26			
4+03	4+01	230(20) [6,7]	-	_	75			
4+03	6+01	370(30) [6,7]	_	-	167			

Table 4. Quadrupole electrical transitions $B(E2; I_i 0_1 \rightarrow I_f 0_1)$ in $0_1 -$ band $(e^2 b^2)$.

I_i	I_{f}	Exp.	This work
2	0	0,92(3) [9]	0,94
4	2	1,29(2) [9]	1,32
6	4	1,47(4) [9]	1,46
8	6	1,57(15) [9,10]	1,53
10	8	1,59(9) [9,10]	1,57

Table 5. Theoretical and experimental values of the ratios $R_{IK} = B(E2;IK \rightarrow I_10_1 / B(E2;IK \rightarrow I_20_1)$ for transitions from the levels of $K = 2_1^+ - 2_2^- - 2_2^+ - 2_2^- - 2_2^- - 2_2^- - 2_2^- - 2_2^- - 2_2^- - 2_2^- - 2_2^- - 2_2^- - 2_2^- -$

IK	I ₁ 0 ₁	I ₂ 0 ₁	Exp.	This work	Alaga rule [12]
1	2	3	4	5	6
2+2 ₁	2+0 ₁	0 +0 ₁	1,55(1) [1] 1,54(5) [6] 1,56(17) [6] 1,75(55) [11]	1,50	1,43
2+2 ₁	4 +0 ₁	2+0 ₁	0,106(3) [1] 0,101(6) [6] 0,105(3) [6]	0,122	0,05
3+2 ₁	4 + 0 ₁	2+0 ₁	0,70(3) [1] 0,67(18) [6] 0,77(15) [7] 0,56(21) [11]	0,70	0,40
4+2 ₁	4 + 0 ₁	2+0 ₁	6,03(12) [1] 5,38(29) [6] 5,81(24) [6] 5,9(6) [7]	2,29	2,95
4+2 ₁	6+0 ₁	4+0 ₁	0,046(8)[1] 0,030(6) [6]	0,33	0,09
5+2 ₁	6+0 ₁	4+0 ₁	1,44(15) [1] 1,41(16) [6] 1,45(19) [6] 1,40(16) [7]	1,30	0,57

6 ⁺ 2 ₁	6+0 ₁	4 +0 ₁	3,7 (3) [1] 5,9(14) [11]	2,05	3,71
7+2 ₁	8+0 ₁	6+0 ₁	2,0(12) [11]	1,92	0,67
9+2 ₁	10+0 ₁	8+0 ₁	2,5(12) [11]	2,57	0,73
2+0 ₂	2+0 ₁	0+0 ₁	5.50(38) [1] 5,26(25) [6] 5,06(51) [7]	2,10	1,43
2+0 ₂	4+0 ₁	2+0 ₁	1,18(8) [1] 1,17(5) [6] 1,10(11) [7]	0,31	1,8
4+0 ₂	4+0 ₁	2+0 ₁	2,20(17) [1] 2,94(35) [6] 2,30(22) [7]	2,01	0,91
4+0 ₂	6+0 ₁	4+0 ₁	0,71(33) [1] 0,7(3) [6] 0,65(9) [7]	0,2	1,75
6 ⁺ 0 ₂	6+0 ₁	4 ⁺ 0 ₁	1,59(50) [1] 1,2(8) [11]	1,76	0,81

1	2	3	4	5	6
8+0 ₂	8+0 ₁	6+0 ₁	1,98(22) [1]	1,32	0,59
10 ⁺ 0 ₂	10 +0 ₁	8+0 ₁	18,5 (13) [1] >1,7 [11]	0,95	0,74
2+0 ₃	2+0 ₁	0 +0 ₁	3,94(18) [1] 0,50(15) [6] 0,55(17) [7]	2,30	1,43
2+0 ₃	4 +0 ₁	2+0 ₁	3,58(12) [1] 28(8) [6] 25(8) [7]	2,69	1,8
4+0 ₃	4 +0 ₁	2+0 ₁	16(5) [6] 15(4) [7]	2,84	0,91
4+0 ₃	6+0 ₁	4 ⁺ 0 ₁	3,0(3) [6] 1,6(2) [7]	2,23	1,75
3+22	4 + 0 ₁	2+0 ₁	1,41(12) [1]	0.95	0.40
4 ⁺ 2 ₂	4 ⁺ 0 ₁	2 ⁺ 0 ₁	7,19(102) [1]	4.53	2.95

Magnetic Dipole Transitions

The multipole mixing coefficients $\delta(E2/M1)$ are calculated for the transitions $I_i K_i \rightarrow I_f gr$ from the $\beta_{\nu} - , \gamma -$ and 1⁺ bands for the ¹⁵⁶Gd.

$$\delta(I_i K_i \to I_f K_f) = 0.834 \cdot E_{\gamma}(MeV)$$
$$\times \frac{\langle I_f K_f \| \hat{m}(E2) \| I_i K_i \rangle}{\langle I_f K_f \| \hat{m}(M1) \| I_i K_i \rangle} \left(\frac{e \cdot b}{\mu_0}\right)$$

(13)

The reduced matrix element of M1- transition in Eq. (13) is determined as follows:

$$\langle I'0_{1} \| \hat{m}(M1) \| IK \rangle = \sqrt{\frac{3(2I+1)}{4\pi}}$$

$$\times \left(\sum_{K_{1}=1}^{2} \left(g_{K_{1}} - g_{R} \right) K_{1} \Psi_{K_{1},K}^{I} \Psi_{K_{1},0_{1}}^{I} C_{IK_{1};10}^{IK_{1}} \right)$$

$$+ \frac{\sqrt{6}}{10} \sum_{\nu} m_{1_{\nu}}^{\prime} \left(\Psi_{0_{1},0_{1}}^{I} \Psi_{1_{\nu},K}^{I} - \Psi_{1_{\nu}}^{I} \Psi_{0_{1},K}^{I} \right) C_{I1;1-1}^{I0}$$

$$(14)$$

where $m_{l_{\nu}} = \langle 0_1 | \hat{m}(M1) | 1_{\nu}^+ \rangle$ is matrice elements between the wave functions of ground 0_1 and $1_{\nu}^+ -$ bands, $g_K -$ intrinsic g-factor of band with $K \neq 0$. From the systematic of $g_R -$ factors of deformed nuclei rear – earth and transuranium region is follows:

$$g_R \approx 0.4 \pm 0.1 \left(g_R = Z/A \right).$$

The values of parameter $m_{1_{\nu}}$ is given in Table 5, which is determined using the experimental data [3] for the probability of M1- transitions from the state $I^{\pi} = 1^{+}_{\nu}$ to the level of ground bands. The adiabatical formula for the M1- transitions has form:

$$B(M1; I1_{\nu} \to I'0_{1}) = \frac{3}{4\pi} \cdot 0,06 \cdot \left(m_{1_{\nu}} \cdot C_{I1;1-1}^{I'0}\right)^{2} (15)$$

					Ex	р.	Theor.
$1^+_{ u}$	$E_{\mathbf{l}_{\nu}^{+}}$ (keV)	E_{γ} (keV)	I_{γ}	$m_{l_{\nu}}^{\prime}\left(\mu_{N} ight)$	[1]	[2]	<i>B</i> (M1) (μ _N)
1_{1}^{+}	1965	1877 1965	15.39(12) 39.90(20)	11.25	-	-	0.303 0.604
1_{2}^{+}	2027	1938 2027	59.4(4) 100.0(5)	-7.82	0.014^{+3}_{-5} 0.037(11)	0.025^{+6}_{-9} 0.066(20)	0.145 0.292
1_{3}^{+}	2187	2098 2187	100.0(5) 91.5(5)	-3.88			0.036 0.072
1_{4}^{+}	2270	2187 2270	100.0(6) 48.1(4)	-7.34	-	-	0.128 0.257
1_{5}^{+}	2301	2211 2301	100.0(24) 10.6(9)	-0.25	-	-	$1 \cdot 10^{-4}$ $3 \cdot 10^{-4}$
1_{6}^{+}	2361	2292 2361	-100(5)	-0.25	-	-	$1 \cdot 10^{-4}$ $3 \cdot 10^{-4}$
1_{7}^{+}	2402	2314 2403	53 100	-4.8	0.036^{+11}_{-14} 0.061^{+12}_{-19}	$\begin{array}{c} 0.064^{+20}_{-25} \\ 0.109^{+22}_{-34} \end{array}$	0.055 0.110
1_{8}^{+}	2785	2696 2785	55 100	-4.09	0.027^{+8}_{-9} 0.044^{+10}_{-12}	$0.048^{+14}_{-16}\\0.079^{+18}_{-22}$	0.040 0.080
1_{9}^{+}	2974	2885 2974	52(10) 100	-4.87	0.036(6) 0.063(22)	0.064(11) 0.113(16)	0.056 0.113
1^{+}_{10}	3010	2921 3010	55(20) 100	-0.79	$\begin{array}{c} 0.010^{+5}_{-6} \\ 0.017(4) \end{array}$	$\begin{array}{c} 0.018^{+9}_{-11} \\ 0.030(7) \end{array}$	0.0015 0.030
1_{11}^{+}	3050	2961 3050	26(16) 100	-2.77	$\begin{array}{c} 0.008^{+4}_{-5} \\ 0.020(6) \end{array}$	$\begin{array}{c} 0.014^{+7}_{-9} \\ 0.036(11) \end{array}$	0.018 0.037
1^{+}_{12}	3070	2981 3070	57(5) 100	-9.23	$0.142_{-19}^{+17} \\ 0.227(17)$	0.254_{-34}^{+30} 0.406(30)	0.203 0.407
1^{+}_{13}	3122	3033 3122	50(20) 100	-2.64	0.010(1) 0.018(4)	0.018(2) 0.032(7)	0.021 0.029
1^{+}_{14}	3158	3069 3158	-	-4.87	-0.063(9)	-0.113(39)	0.056 0.113
1_{15}^{+}	3218	3121 3218	44(10) 100	-4.80	0.029 ⁺⁸ 0.061(7)	$\begin{array}{c} 0.052^{+14}_{-16} \\ 0.109(13) \end{array}$	0.055 0.110

Table 6. Characteristics of the 1_{ν}^{+} state in ¹⁵⁶Gd. $E_{1_{\nu}}$ denotes the energies of the 1_{ν}^{+} levels.

Table 7. Reduced probabilities of M1 transitions from the states of the $K^{\pi} = 2_1^+$ and 0_3^+ bands

IV	${m E}$	F	E	Theor.	
IK _i	L_{I}	L_{γ}	B(M1) W.u	$B(M1)(\mu_N)$	$B(M1)(\mu_N)$
$2^+2_{\gamma_1}$	1154	1065.2	$6 \cdot 10^{-5}(4)$	$1.07 \cdot 10^{-4}(72)$	$1.7 \cdot 10^{-3}$
3+2,,	3+2 1240	959.8	$6 \cdot 10^{-5}(4)$	$1.07 \cdot 10^{-4}(72)$	$6.76 \cdot 10^{-4}$
71	1248	1248 1159	$1.4 \cdot 10^{-4}(3)$	2.51.10 -4(54)	$9.80 \cdot 10^{-4}$
$4^{+}2_{\gamma_{1}}$	1355	1067.2	0.014(+7, -8)	2.51.10 -3(+1.25,-1.43)	$4.10 \cdot 10^{-3}$
2 ⁺ 0 ₃	1258.01	1169.1	0.0078(+9,-7)	1.40.10 -2(+16,-13)	$2.9 \cdot 10^{-3}$

Table 8. Multipole mixture coefficients $\delta(E2/M1)$ for ¹⁵⁶Gd. $\langle E2 \rangle_{if}$ and $\langle M1 \rangle_{if}$ are the reduced matrix elements of the and M1 transitions, respectively, and E_{γ} is the energy of transition

$I_i K_i$	$I_f K_f$	E_{γ}, MeV	$\langle \text{E2} \rangle_{if} e \text{Fm}^2$	$ig \mathrm{M1}ig _{i\!f}$, μ_N	δ _{exp. [1]}	$\delta_{\text{theor.}}$	δ _{adiab.[12]}
221	201	1.0652	-18.81	0.0412	-16(5)	-4.1	-
321	201	1.159	19.46	-0.0313	-11.8(+6,-7)	-6.0	_
321	401	0.9598	-16.23	0.0260	-12(+13,-5)	-5.0	_
421	401	1.0672	-18.60	0.0639	+4.0(+9,-16)	-2.6	-
521	40_{1}	1.2187	-16.83	0.0488	$\delta > 7$	-3.5	_
521	60 ₁	0.922	19.21	-0.0417	-	-3.5	-
62 ₁	60 ₁	1.060	17.00	-0.063	$\delta < -0.8 \text{ or} > 2.5$	-2.4	-
721	60 ₁	1.2648	15.06	-0.0634	-	-2.5	_
821	801	1.0457	15.84	-0.0584	$\delta < -0.6 \text{ or}$ $\delta > 1.6$	-2.4	-
92 ₁	801	1.2843	-13.73	0.0758	$\delta < -0.8$ 0.39(6)	-1.9	-
202	201	1.0405	10.31	-0.1011	+5.9(+14,-28)	-0.9	-
402	401	1.0106	-12.75	0.2176	-	0.49	_
111	201	1.876	14.66	0.5503	+0.41(+25,-14) +0.35(4)	0.41	0.37
112	201	1.938	14.61	-0.3812	-0.55(3)	-0.63	-0.5
11 ₃	201	2.0977	14.49	-0.1888	-1.2(2) or -1.08(+0.03,-0.22)	-1.34	-1.20
11_{4}	201	2.1807	14.44	-0.3579	-0.66(+0.06,-0.08)	-0.73	-0.66
203	201	1.1691	-7.53	-0.0539	0.38(6)	1.4	-
403	40_{1}	1.1741	-8.65	-0.0934	-	0.91	_

Table 9. Magnetic moments $\mu(I^+0_1)$ of the states of the main rotational bands of 156 Gd nuclei

COPLER SHOULD BE AND A SHOULD BE AN AN AN AN AN AN AN AN AN	and the second se	THE PROPERTY OF THE PROPERTY O	CARLS OF BRIDE SHOWS SHOW AND AND AND AND
I	Exp. [1]	Theor.	Adiab.
1	$\mu(I)(\mu_N)$	$\mu(I)(\mu_N)$	$\mu(I)(\mu_N)$
2^{+}	+0.774(8)	0.768	0.82
4+	+1.24(8)	1.54	1.64
6+	+1.5(13)	2.31	2.46
8^+	-	3.09	3.28
10^{+}	+3.4(5)	3.87	4.10
12^{+}	-	4.65	4.92
DO COMPANY AND INCOME AND IN A PROPERTY AND INTERPORT OF A DOCUMENT AND	THE REPORT OF A DAMAGE AND A DAMAGE	The product of the second s	CONTRACTOR AND ADDRESS OF A DECEMPTOR OF A DECEMPTOR OF A DECEMPTOR OF A DECEMPTOR OF A DECEMPTO

CONCLUSIONS

- Theoretical calculations were carried out for¹⁵⁶Gd nucleus in the framework of the phenomenological model taking into account Coriolis mixing of low–lying rotation bands with positive parity.
- The nonadiabaticities observed in the energies, electromagnetic characteristics of the excited states are explained by the Coriolis mixing of low excited rotational states. To describe the all adiabatic rotational bands has been used the same moments of inertia. The reduced probabilities of E2- and M1- transitions are calculated. The calculated theoretical values of the probabilities of electromagnetic transitions from the states of $K^{\pi} = 0^+_2$, $K^{\pi} = 0^+_3$, $K^{\pi} = 2^+_1$, $K^{\pi} = 2^+_2$ bands and the ratio of transitions from them are compared with existing experimental results and their compatibility is shown.
- The theoretical values of the multipole mixture coefficients $\delta(E2/M1)$ for transitions from the levels of $K^{\pi} = 0^+_{2,3}, 2^+_1, 1^+_{\nu}$ bands to the states of the groud band, and the values B(M1) and magnetic moments of the states of the main bands $\mu(I^+0_1)$, were in satisfactory agreement with the available experimental data.

REFERENCES

- [1] Reich C W 2012 Nuclear Data Sheets, 113 2537
- [2] Pitz H H, Berg U E P, Heil R D, Knaissl U and Stock R 1989 Nucl. Phys. A, 492 411
- [3] Usmanov P N, Mikhailov I N 1997 Phys. Part. Nucl. Lett, 28 348; Usmanov P N, Mikhailov I N 1997 Fiz. Elem. Chastits At. Yadra, 28 887
- [4] Reich C. W. // Nucl. Data Sheets 2005. V. 105. P. 557-774.
- [5] McGowan F K, Milner W T 1981 Phys. Rev. C, 23 1926
- [6] Begzhanov R B, Belenkiy V M, Zalyubovskiy I I, Kuznichenko A B 1989 Handbook on Nuclear Physics Tashkent FAN 1 2
- [7] Backlin A, Hedin G, Fogelberg B et al. 1982 Nucl. Phys. A, 380 189
- [8] Aprahamian A, de Haan R C, Lesher S R et al. 2018 Phys. Rev. C, 98 034303
- [9] Sie S H, Ward D, Geiger J S et al. 1977 Nucl. Phys. A, 291 443
- [10] Kearns F, Varley G, Dracoulis G D et al. 1977 Nucl. Phys. A, 278 109
- [11] Konijn J, Be Boer F W N, Van Poelgeest A et al. 1981 Nucl. Phys. A, 352 191
- [12] Alaga G 1957 Nucl. Phys. 4 625

THANKS FOR YOUR ATTENTION!