NON-STATISTICAL EFFECTS IN BETA & GAMMA DECAYS AND BETA-DELAYED FISSION ANALYSIS

IGOR IZOSIMOV

Fig. 8. Scheme of the nuclear β -delayed fission (βdf). Heights of the internal (A) and external (B) fission barriers for the daughter nucleus are given.

The probability $P_{\beta d}$ of β -delayed process is: $\frac{Q_{\beta}}{Q_{\beta}} = \frac{ \frac{Q_{\beta}}{0} \int S_{\beta}(E) f(Q_{\beta} - E) \Gamma_{d}(E) / \Gamma_{tot}(E) dE}{Q_{\beta}}$ where $\Gamma_{d}(E)$ - delayed process width, $\Gamma_{tot}(E)$ - total width.

$$\Gamma_{\text{tot}} = \Gamma_{\text{d}} + \Gamma_{\gamma}$$

Below Q_{β} there are local maxima in $S_{\beta}(E)$ both for GT and FF β -transitions. The fine structures of these maxima in β^+/EC $S_{\beta}(E)$ are manifested in the form of resonances in the delayed proton spectrum.

The β -transition probability is proportional to the product of the lepton part described by the Fermi function $f(Q_{\beta} - E)$ and the nucleon part described by the β -decay strength function $S_{\beta}(E)$, where E is the excitation energy in daughter nuclei and Q_{β} is the total energy of β -decay.

The previously dominant statistical model assumed that there were no resonances in $S_{\beta}(E)$ in Q_{β} -window and the relations $S_{\beta}(E) = \text{Const}$ or $S_{\beta}(E) \sim \rho(E)$, where $\rho(E)$ is the level density of the daughter nucleus, were considered to be a good approximations for medium and heavy nuclei for excitation energies E > 2-3 MeV.

Ideas about the non-statistical structure of the strength functions $S_{\beta}(E)$ have turned out to be important for widely differing areas of nuclear physics including the description of delayed processes by considering the $S_{\beta}(E)$ structure.

The delayed fission probability substantially depends on the resonance structure of the $S_{\beta}(E)$ both for β - and β +/EC decays. It can therefore be concluded from this analysis of the experimental data on delayed fission that delayed fission can be correctly described only by using the non-statistical β -transition strength function reflecting nuclear-structure effects.

The essential energy window is $\delta = Q_{\beta} - E_{thr}$, where $E_{thr} = B_n$ for delayed neutrons, $E_{thr} = B_p + E_{p0} + q$, for delayed protons, $E_{thr} = E_{II}$ for delayed fission, B_{n} -neutron binding energy, B_p - proton binding energy, $q \approx 1 \text{MeV-}2 \text{MeV}$, E_{p0} – excitation energy at which the proton emission width is comparable with the gamma emission width, E_{II} – second well energy for delayed fission through two hump fission barrier and :

$$\begin{split} P_{\beta d} &\approx \frac{Q_{\beta}}{S_{\beta}(E)f(Q_{\beta}-E)\Gamma_{d}(E)/\Gamma_{tot}(E)\;dE} \\ P_{\beta d} &\approx \frac{Q_{\beta}}{Q_{\beta}} S_{\beta}(E)f(Q_{\beta}-E)\;dE \end{split}$$

For delayed protons, when the energy dependence of $\Gamma_d(E)/\Gamma_{tot}(E)$ is more stronger than the energy dependence of $f(Q_{EC} - E)$, the $P_{\beta d}$ will be higher when peak in $S_{\beta}(E)$ is near Q_{EC} (fig. 3a). For delayed neutrons at $E>B_n$ the energy dependence of $f(Q_{\beta}-E)$ is more stronger than the $\Gamma_n(E)/\Gamma_{tot}(E)$ energy dependence and $P_{\beta d}$ will be higher when a peak in $S_{\beta}(E)$ is near B_n (fig.3b).

Fig. 3. Different $S_{\beta}(E)$ peak position in the $(Q_{\beta} - E_{thr})$ energy window.

For beta delayed fission, beta delayed protons and beta delayed alpha particles emission probability analysis the energy dependence of $S_{\beta}(E)$ is very essential in $(Q_{\beta} - E_{thr})$ window. For beta delayed neutrons as a role only the total part value of beta strength in $Q_{\beta} - E_{thr}$ is essential. Of course for delayed particles spectra analysis the energy dependence of $S_{\beta}(E)$ is essential in all cases.

For correct calculations of the beta-delayed processes probabilities $P_{\beta d}$ it is necessary to have experimental information and systematic on $S_{\beta}(E)$ peaks width and fine structure.

In β -decay the simple (non-statistical) configurations are populated and as a consequence the non-statistical effects may be observed in γ -decay of such configurations. In delayed fission analysis the γ -decay widths Γ_{γ} calculated using the statistical model, which, in general, can only be an approximation.

Because the information about γ -decay is very important for delayed fission analysis, it is necessary to consider the influence of **non-statistical effects on delayed fission** probability not only for β -decay, but also **for** γ -**decay**.

Non-statistical effects in (p,γ) nuclear reactions in the excitation and decay of the non-analog resonances, for which simple configurations play an important role, were analyzed. The strong non-statistical effects were observed both for M1 and E2 γ -transitions.

FIG. 21. Dependence of the multipole mixture δ on the incident-proton energy for nonanalog resonances with $I^{\pi} = \frac{3}{2}^{-}$ in 63 Cu. The excitation energies of resonances in 63 Cu ranged from 8040 to 9250 keV. The average value of δ is $\langle \delta \rangle = (0.6 \pm 0.1)$, while the statistical model gives $\langle \delta \rangle = 0$.

Conclusion

- 1. GT and FF $S_{\beta}(E)$ have resonance and fine structure both for spherical, transition, and deformed nuclei.
- 2. Deformation leads to the splitting of the $S_{\beta}(E)$ peaks.
- 3. For correct calculations of the beta-delayed processes probabilities $P_{\beta d}$ it is necessary to have experimental information and systematic both on $S_{\beta}(E)$ structure and Γ_{γ} values.
- 4. Only after proper consideration of non-statistical effects both for β -decay and γ -decay it is possible to make a **quantitative** conclusion about fission barriers.