LXX International conference "NUCLEUS –2020. Nuclear physics and elementary particle physics. Nuclear physics technologies"

Contribution ID: 380

Type: Oral report

NON-STATISTICAL EFFECTS IN BETA & GAMMA DECAYS AND BETA-DELAYED FISSION ANALYSIS

Friday, 16 October 2020 17:35 (25 minutes)

The β -transition probability is proportional to the product of the lepton part described by the Fermi function $f(Q_{\beta} - E)$ and the nucleon part described by the β -decay strength function $S_{\beta}(E)$, where E is the excitation energy in daughter nuclei and Q_{β} is the total energy of β -decay.

The previously dominant statistical model assumed that there were no resonances in $S_{\beta}(E)$ in Q_{β} -window and the relations $S_{\beta}(E) = Const$ or $S_{\beta}(E) \sim \rho(E)$, where $\rho(E)$ is the level density of the daughter nucleus, were considered to be a good approximations for medium and heavy nuclei for excitation energies $E > 2 \div 3MeV$. The effect of the non-statistical resonance structure of the $S_{\beta}(E)$ on the probability of delayed fission was first investigated in [1]. Then the method developed in [1] for the description of delayed processes by considering the $S_{\beta}(E)$ structure was used to analyze delayed fission of a wide range of nuclei [2–6]. Ideas about the nonstatistical structure of the strength functions $S_{\beta}(E)$ have turned out to be important for widely differing areas of nuclear physics [4].

When studying delayed fission, (i.e., fission of nuclei after the β -decay) one can obtain information on fission barriers for nuclei rather far from the stability line [1-3]. The delayed fission probability substantially depends on the resonance structure of the $S_{\beta}(E)$ both for β^- and β^+/EC -decays [1-6]. It can therefore be concluded from this analysis of the experimental data on delayed fission [1-6] that delayed fission can be correctly described only by using the non-statistical β -transition strength function reflecting nuclear-structure effects. In β -decay the simple (non-statistical) configurations are populated and as a consequence the non-statistical effects may be observed in γ -decay of such configurations. In delayed fission analysis the γ -decay widths Γ_{γ} calculated using the statistical model, which, in general, can only be an approximation. Non-statistical effects in (p, γ) nuclear reactions in the excitation and decay of the non-analog resonances, for which simple configurations play an important role, were analyzed in [5]. The strong non-statistical effects were observed for M1 and $E2 \gamma$ -transitions. Because the information about γ -decay is very important for delayed fission analysis, it is necessary to consider the influence of non-statistical effects on delayed fission probability not only for β -decay, but also for γ -decay.

In this report some features of β -delayed fission probability analysis are considered. It is shown that only after proper consideration of non-statistical effects both for β -decay and γ -decay it is possible to make a quantitative conclusion about fission barriers.

- I.N. Izosimov, Yu.V. Naumov, Bulletin of the Academy of Science USSR, Physical Series, 42, 25 (1978). https://www.researchgate.net/publication/322539669
- 2. H.V. Klapdor, C.O. Wene, I.N. Isosimow, Yu.V. Naumow, Phys. Lett., 78B, 20 (1978).
- 3. H.V. Klapdor, C.O. Wene, I.N. Isosimov, Yu.V. Naumow, Z. Physik, A292, 249 (1979).
- $4.\ Yu.V.\ Naumov, A.A.\ Bykov, I.N.\ Izosimov, Sov.\ J.\ Part.\ Nucl., 14, 175 (1983).\ https://www.researchgate.net/publication/233832321 (1993).$
- 5. I.N. Izosimov, Physics of Particles and Nuclei, 30, 131 (1999). DOI: 10.1134/1.953101
- 6. I.N. Izosimov, et al, Phys. Part. Nucl., 14, 963 (2011). DOI: 10.1134/S1063779611060049

Primary author: IZOSIMOV, Igor (Joint Institute for Nuclear Research)

Presenter: IZOSIMOV, Igor (Joint Institute for Nuclear Research)

Session Classification: Section 1. Experimental and theoretical studies of the properties of atomic nuclei

Track Classification: Section 1. Experimental and theoretical studies of the properties of atomic nuclei.