

REGISTRATION OF DELAYED NEUTRONS FROM 238U PHOTOFISSION AT $E_{\gamma} \text{max} \approx 10 \text{ MeV}$ IN INTERVALS OF $\sim (1\text{--}5) \text{ ms}$ AFTER BEAM PULSES OF THE ELECTRON ACCELERATOR

Wednesday 14 October 2020 17:00 (25 minutes)

Studies of production and properties of nuclei near the stability boundary with respect to neutron emission are an important part of modern nuclear spectroscopy (see, e.g., [1]). In fission of actinide nuclei, neutron-rich nuclei are produced (especially in short-lived light fragments formed in asymmetric fission at low energies of bombarding particles). In small part of beta-decays of these fragments-precursors (with values of their half-lives $T_{1/2}$) highly excited states of daughter-nuclei are populated, for which in some cases it may be possible to emit delayed neutrons. Usually, for convenience of description, several groups of nuclei-precursors are introduced according to their $T_{1/2}$ values of which until now have been not less than 0.2 s [2, 3]. But for an adequate description of critical systems (e.g., their reactivity) it is very important to look for precursors with $T_{1/2}$ down to $\sim 1 \text{ ms}$ [3].

In our previous work [4] the measurement was performed from 4.5 ms after the beam pulse. And it seemed that for photofission of ^{238}U at $E_{\gamma} \text{max}$ about 10 MeV there is indication for existence of short-lived nuclei-precursors with $T_{1/2} \sim 1 \text{ ms}$. In the present work we continued studies in this direction.

Measurements were made at the pulsed linear electron accelerator LUE-8-5 of the INR RAS [5] at the energy of incident electrons E_e about 10 MeV and beam repetition rate 100 Hz. The scintillation fast neutron spectrometer with pulse shape discrimination of background g-quanta (see [6] and references therein) was used. The controlled divider of photomultiplier tube of the scintillation detector [7] had to be used to decrease negative influence of big light output near the beam pulse time. Delayed neutrons and g-quanta were registered in interval from 1.5 ms after beam pulse to 9 ms with average beam currents about 16 nA.

The statistical uncertainties of the data, obtained so far in this way, do not allow us to distinguish existence of nuclei-precursors of delayed neutrons with $T_{1/2} \sim 1 \text{ ms}$.

References:

1. S.Y.F.Chu, L.P.Ekström, R.B.Firestone. The Lund/LBNL Nuclear. Data Search. 1999. <http://nucleardata.nuclear.lu.se/toi/>
2. V.M.Piksaikin, et al. // Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno-reaktornye konstanty. 2019. Vypusk 1. P.184 (in Russian).
3. S.B.Borzakov, et al. Izuchenie krivykh raspada zapazdyvayushchikh neytronov pri delenii ^{235}U i ^{239}Pu teplovymi neytronami. // Voprosy Atomnoy Nauki i Tekhniki. Seriya: Yaderno- reaktornye konstanty. 1999. Vypusk 2 (in Russian).
4. L.Z.Dzhilavyan, A.M.Lapik, et al. // Bull. Russ. Acad. Sci.: Phys. 2020. V.84. P.356.
5. V.G.Nedorezov, V.N.Ponomarev, et al. // Bull. Russ. Acad. Sci.: Phys. 2019. V.83. P.1161.
6. L.Z.Dzhilavyan, A.M.Lapik, et al. // Phys. Part. Nuclei 2019.V.50, No.5. P.626.
7. L.Z.Dzhilavyan, A.M.Lapik, et al. // Bull. Russ. Acad. Sci.: Phys. 2019. V.83. P.474.

Author: Dr DZHILAVYAN, Leonid (Institute for Nuclear Research RAS)

Co-authors: Mr LAPIK, Alexander (INR RAS); Prof. NEDOREZOV, Vladimir (INR RAS); Dr PONOMAREV, Vasiliy (INR RAS); Mr RUSAKOV, Arthur (INR RAS); Dr SOLODUKHOV, Gennadiy (INR RAS)

Presenter: Dr DZHILAVYAN, Leonid (Institute for Nuclear Research RAS)

Session Classification: Section 2. Experimental and theoretical studies of nuclear reactions

Track Classification: Section 2. Experimental and theoretical studies of nuclear reactions.