INVESTIGATION OF REACTION CROSS SECTIONS
FOR BEAM OF 8Li, 8He
ON 28Si, 59Co, 181Ta TARGETS

Sobolev Yu.G., Stukalov S.S., Samarin V.V., Naumenko M.A.,
Penionzhkevich Yu.E.

FLEROV LABORATORY of NUCLEAR REACTIONS
Joint Institute for Nuclear Research, Dubna, Russia
Outline

• Motivation
• Experiment
• Fusion-evaporation calculations
• Data processing
• Theory:
 • Structure of projectile nuclei ^8Li, ^8He
 • Time-dependent Schrödinger equation approach
• Cross sections calculations:
 • Neutron loss cross sections
 • Total reaction cross sections
Total reaction cross sections for $^{11}\text{Li} + ^{28}\text{Si}$ compared with $^{9}\text{Li} + ^{28}\text{Si}$

Great enhancement is observed

Motivation: what about ^8He, ^8Li?

Experimental charge radii [1], fm

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Radius (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^6Li</td>
<td>2.589</td>
</tr>
<tr>
<td>^7Li</td>
<td>2.444</td>
</tr>
<tr>
<td>^8Li</td>
<td>2.339</td>
</tr>
<tr>
<td>^9Li</td>
<td>2.245</td>
</tr>
<tr>
<td>^{11}Li</td>
<td>2.482</td>
</tr>
<tr>
<td>^4He</td>
<td>1.6755</td>
</tr>
<tr>
<td>^6He</td>
<td>2.066</td>
</tr>
<tr>
<td>^8He</td>
<td>1.924</td>
</tr>
</tbody>
</table>

Experiment: a projectile nucleus beam

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum magnetic rigidity</td>
<td>Tm</td>
<td>3.6</td>
</tr>
<tr>
<td>Solid angle</td>
<td>msr</td>
<td>0.9</td>
</tr>
<tr>
<td>Horizontal acceptance angle</td>
<td>mrad</td>
<td>20</td>
</tr>
<tr>
<td>Vertical acceptance angle</td>
<td>mrad</td>
<td>14</td>
</tr>
<tr>
<td>Momentum acceptance</td>
<td>%</td>
<td>4.2 - 8.4</td>
</tr>
<tr>
<td>Intermediate focal plane F2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal magnification</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Vertical magnification</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>Momentum dispersion</td>
<td>mm/%</td>
<td>4.0 - 18.0</td>
</tr>
<tr>
<td>Momentum resolution (FWHM)</td>
<td></td>
<td>3x10^{-3}</td>
</tr>
<tr>
<td>Achromatic focal plane F3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal and vertical magnification</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>Horizontal RIB size (FWHM)</td>
<td>mm</td>
<td>8</td>
</tr>
<tr>
<td>Vertical RIB size (FWHM)</td>
<td>mm</td>
<td>10</td>
</tr>
<tr>
<td>Final focal plane F4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momentum dispersion</td>
<td>mm/%</td>
<td>-</td>
</tr>
<tr>
<td>Horizontal RIB size (FWHM)</td>
<td>mm</td>
<td>20</td>
</tr>
<tr>
<td>Vertical RIB size (FWHM)</td>
<td>mm</td>
<td>16</td>
</tr>
<tr>
<td>Horizontal acceptance</td>
<td>(\pi\times\text{mm}\times\text{mrad})</td>
<td>60</td>
</tr>
<tr>
<td>Vertical acceptance</td>
<td>(\pi\times\text{mm}\times\text{mrad})</td>
<td>43</td>
</tr>
</tbody>
</table>

Fig. 1. ACCULINNA Fragment Separator. http://aculina.jinr.ru/a-1.html

F1 – object plane; F2 – intermediate dispersion plane; F3 – achromatic focal plane; F4 – second focal plane, D1 and D2 – magnets, Q1–Q15 – quadrupole lenses, Q9–Q15 – intermediate dispersive magnetic quadrupole lenses.
Experiment: target and multi-detector γ-spectrometer

(c) Three-dimensional scheme of the experimental setup and its cross section during (a) measurements with a projectile nucleus beam and (b) calibration of the segmented spectrometer: (1) plastic scintillation detector; (2) polyethylene plates; (3) first active collimator; (4) ΔE strip Si-detector; (5) ΔE_0 start Si-detector; (6) second active collimator; (7) 28Si, 59Co, or 181Ta target; (8) beam exit window; (9) scintillation CsI(Tl) detectors with PMTs; (10) Pb shielding; (11) PMT; (12) light reflector; (13) scintillator for detecting β-particles; (14) 60Co source; (15) CeBr$_3$ detector; and (16) reaction chamber.
Calibration of the γ-spectrometer

Fig. 3. (a) Inclusive energy spectrum of the CeBr$_3$ detector, obtained when calibrating the γ-spectrometer using a 60Co source. (b) Energy spectrum of the CeBr$_3$ detector accumulated under the condition of γ–β coincidence. (c) Two-dimensional $T \times E$ spectrum, where T is the time between signals from the β- and γ-detectors and E is the amplitude of the signal from γ-detector; time window $\Delta T \approx 20$ ns of γ–β coincidence is outlined. Peaks 1 (1173 keV) and 2 (1332 keV) correspond to the energies of γ-quanta emitted by 60Ni* nuclei; weak background peaks 3–7 are due to registration of the ionizing radiation from radioactive impurities inside the CeBr$_3$ scintillator.

Calibration of the γ-spectrometer

The registration and accumulation of events with multiplicity $M = 1$ and the subsequent combining of records in groups of two, three, or more, allows us to obtain records of simulated events of γ-quantum emission with multiplicities $M = 2, 3,$ or more.

We denote the number of the simulated events of emission M γ-quanta in which k spectrometer detectors were triggered as $N_k^{(M)}$, where $k = 0, ..., 12$. The absolute efficiency $\varepsilon_{\text{abs}}(M)$ for registration of emission events with multiplicity M

Fig. 4. (a) Experimental absolute efficiencies $\varepsilon_{\text{abs}}(M)$ of registering γ-cascades, measured with a 60Co source for the 6-detector (squares) and 12-detector (circles) spectrometers, and results simulated using the GEANT-4 code for the 6-detector (stars) and 12-detector (triangles) spectrometers. (b and c) Probabilities $w_M(k)$ of triggering k detectors for experimentally simulated events of emission of γ-quanta with multiplicity M. The values of M are given by the numbers over the vertices of the distributions. [2] Yu. G. Sobolev, Yu. E. Penionzhkevich, V. V. Samarin, M. A. Naumenko, S. S. Stukalov, I. Siváček, S. A. Krupko, A. Kugler, and J. Louko. Bulletin of the Russian Academy of Sciences: Physics, 2020, Vol. 84, No. 8, pp. 948–956.
Experiment: identification of beam nuclei

Fig. 5. Two-dimensional $T_{\text{TOF}} \times \Delta E_0$ spectrum for identification of beams of ^6He and $^7,^8,^9\text{Li}$ nuclei (a), $^6,^8\text{He}$ and $^9,^{11}\text{Li}$ nuclei (b) in front of a target. The time of flight (in the channels) is plotted on the abscissa axis. The energy losses of beam particles in a 243-μm thick ΔE_0 detector are plotted on the ordinate axis. The statistics for the ^7Li nuclei are considerably lower than those for the rest of the nuclei. [2]

Results of experiments: background

Fig. 6. N'_k are the numbers of the reaction events with triggering of k detectors without the target. The ratio between number N'_k with number I_0 of particles flown into the spectrometer was approximated by the linear dependence $N'_k = \beta_k I_0$ with background coefficients β_k determined using the least squares method from the results of m measurements. The values of error $\delta\beta_k$ were estimated via linear regression.
Results of experiments: the numbers of the reaction events with triggering of k detectors

Fig. 7. Values of relative frequencies of the number of the detected events with the background subtracted for the reactions of 8Li nuclei on 28Si, 59Co, and 181Ta targets $P_k = N_k / I_0 - \beta_k$, here N_k are the numbers of the reaction events with triggering of k detectors with the target.
Fig. 7. Values of relative frequencies of the number of the detected events with the background subtracted for the reactions of 8Li nuclei on 28Si, 59Co, and 181Ta targets $P_k = N_k / I_0 \beta_k$, here N_k are the numbers of the reaction events with triggering of k detectors with the target.

Fig. 8. Values of cross sections of emission of M neutrons, results of fusion-evaporation calculations using NRV knowledge base http://nrv.jinr.ru
Let \(N_k \) and \(N'_k \) be the numbers of the reaction events with triggering of \(k \) detectors with and without the target, respectively. When the measurements were made without the target, the ratio between number \(N'_k \) of triggering of \(k \) detectors with number \(I_0 \) was approximated by the linear dependence

\[
N'_k = \beta_k I_0
\]

\[
\beta_k = \frac{\sum_{j=1}^{m} I_{0j} N'_k}{\sum_{j=1}^{m} I_{0j}}.
\]

with background coefficients \(\beta_k \) determined using the least squares method from the results of \(m \) measurements. The values of error \(\delta \beta_k \) were estimated via linear regression.

The measured reaction cross section taking into account the number \(k \) of the triggered detectors of the segmented spectrometer was found as described below. Let \(M \gamma \)-quanta (and/or neutrons) be emitted in every reaction event with probability \(\Gamma(M) \), \(1 \leq M \leq M_{\text{max}} \), then the probability of triggering of \(k \) detectors when registering a reaction is

\[
P(k) = \sum_{M=1}^{M_{\text{max}}} \Gamma(M) w_M(k).
\]

For total number of reactions \(I_R = I_0 \sigma_R n d \), the calculated number of their registrations with triggering of \(k \) detectors is

\[
P(k) I_R = \eta I_0 \sigma_R n d \sum_{M=1}^{M_{\text{max}}} \Gamma(M) w_M(k).
\]

Here, \(\eta \) is a correction for nonisotropic neutron emission in the forward direction upon the breakup of weakly bound \(^8\text{Li}\) and \(^8\text{He}\) nuclei.
Energy dependences of total reaction cross sections

Fig. 9. (a) Total cross sections of reactions 8Li + 28Si (upright triangles), 8Li + 59Co (squares), and 8Li + 181Ta (inverted triangles) obtained in this work, compared to total cross section of the 8Li + 28Si reaction obtained in [1] (diamonds).

(b) Total cross sections of the reactions of 8He nuclei on 28Si (upright triangles) and 181Ta (inverted triangles) targets obtained in this work, compared to the total cross section of the 6He + 28Si reaction obtained in [2] (empty squares), [1] (diamonds), [3] (circle), and [4, 5] (stars).

Total reaction cross section is determined using the formula

$$\sigma_R = \frac{\tilde{\sigma}_R}{\eta}$$

Here, η is a correction for nonisotropic neutron emission in the forward direction upon the breakup of weakly bound 8Li and 8He nuclei. This correction was found under the assumption that it depends mainly on the energy of separation of one or two external neutrons. To find the values of η, the total cross sections of the reactions with the 8Li, 8He and 6He nuclei were normalized to data obtained earlier.
Energy dependences of total reaction cross sections

The total reaction cross sections of 8Li nuclei on 59Co and 181Ta targets exceed those of the 8Li + 28Si reaction by around 1.5 and 2.2 times, respectively. The ratio of the cross sections for fusion reactions of 8Li nuclei with stable heavy nuclei with mass numbers A_1 and A_2 is approximately equal to the ratio of the geometric cross sections of these nuclei, which can be estimated as

$$\left(\frac{8^{1/3} + A_1^{1/3}}{8^{1/3} + A_2^{1/3}}\right)^2$$

For the pairs of nuclei 59Co–28Si and 181Ta–28Si, these ratios are 1.37 and 2.31, respectively, which is close to the experimental values. The total reaction cross section can be approximated as the sum of the fusion cross section and the cross section of peripheral reactions, the ratio of the latter can be estimated as

$$\left[\left(9^{1/3} + A_1^{1/3}\right)/\left(9^{1/3} + A_2^{1/3}\right)^2\right]$$

For the pairs of nuclei 59Co–28Si and 181Ta–28Si, these –28Si and 181Ta–Si, these ratio are 1.17 and 1.52, respectively. On the whole, the above obtained total cross sections of 8Li, 8He + 28Si,

Properties of He and Li isotopes

The correction η was found under the assumption that it depends mainly on the energy of separation of one or two external neutrons, for 8Li, 8He $\eta=0.9$ and for 6He $\eta=0.83$.

$$ ^8\text{He} \left(\alpha + n + n + n + n + n \right) $$

- $J(\pi)=0^+$
- Binding energy (MeV) 31.396
- Binding energy (MeV/A) 3.925
- Separation energy: 1n (MeV) 2.53475
- Separation energy: 2n (MeV) 2.12501
- Separation energy: 1p (MeV) 24.81432
- Charge radius (fm) 1.9239 ± 0.0306 [1]

$$ ^8\text{Li} \left(\left\{^7\text{Li}\right\} + n \right) $$

- $J(\pi)=2^+$
- Binding energy (MeV) 41.278
- Binding energy (MeV/A) 5.160
- Separation energy: 1n (MeV) 2.03260
- Separation energy: 2n (MeV) 9.28367
- Separation energy: 1p (MeV) 12.41632
- Separation energy: 2p (MeV) 35.50791
- Separation energy: α (MeV) 6.10022
- Charge radius (fm) 2.339 ± 0.044 [1]
The NRV web knowledge base is a unique interactive research system:

- Allows to run complicated computational codes
- Works in any internet browser supporting Java plugin
- Has graphical interface for preparation of input parameters and analysis of output results
- Combines computational codes with experimental databases on properties of nuclei and nuclear reactions
- Contains detailed description of models

http://nrv.jinr.ru
Structure of projectile nuclei ^{8}Li, ^{8}He

Projectile nuclei ^{8}Li and ^{7}Li were nonspherical. The experimental absolute values of quadrupole deformation $|\beta_2|$ for the first nucleus were 0.542 ± 0.033, 0.476 ± 0.075, and 0.526 ± 0.054 [19].

Fig. 11. Probability densities in the cylindrical coordinate system for the outer neutron of ^{8}Li on the values of the deformation parameters: (a) $\beta_2 = -0.5$, (b) $\beta_2 = 0.5$, and (c, d) $\beta_2 = 0$. The absolute values of the total angular momentum projection on the axis of symmetry z of the deformed nucleus are (a) $|m_j| = 1/2$, (b) $|m_j| = 3/2$, (c) $|m_j| = 1/2$, and (d) $|m_j| = 3/2$.

Fig. 12. Energy level diagram of neutron of the projectile nuclei ^{8}Li, ^{8}He and target nucleus ^{28}Si in the shell model of a spherical nucleus.
Time-dependent Schrödinger equation approach

- Classical motion of centers of nuclear cores
 \[m_1 \ddot{\tilde{r}}_1 = -\nabla_{\tilde{r}} V_{12}(\tilde{r}_1 - \tilde{r}_2), \quad m_2 \ddot{\tilde{r}}_2 = -\nabla_{\tilde{r}} V_{12}(\tilde{r}_2 - \tilde{r}_1). \]

- Transfer (rearrangement) of neutrons during collision is described by time-dependent Schrödinger equation with spin-orbit interaction [1-4]
 \[i\hbar \frac{\partial}{\partial t} \Psi(\tilde{r}, t) = \left\{ -\frac{\hbar^2}{2m} \Delta + V_1(\tilde{r}_1(t)) + V_2(\tilde{r}_2(t)) + \hat{V}_{LS}^{(1)}(\tilde{r}_1(t)) + \hat{V}_{LS}^{(2)}(\tilde{r}_2(t)) \right\} \Psi(\tilde{r}, t), \]
 \[\Psi = \begin{pmatrix} \psi_1(\tilde{r}, t) \\ \psi_2(\tilde{r}, t) \end{pmatrix}, \quad \hat{V}_{LS}^{(i)} = -\lambda_i \frac{\hbar}{(2mc)^2} \hat{\sigma} \left[\nabla V_i \hat{p} \right]. \]

- The initial wave function is determined from shell model. Parameters of shell model were chosen based on experimental data on charge radii and neutron separation energies.

1,2 are two heavy classical particles (nuclear cores); 3 is light quantum particle (neutron of projectile or target).

References
Some theoretical approaches to description of neutron transfer

- **Time-dependent Schrödinger equation (TDSE):**
 - the quantum description of several independent external neutrons,
 - a small 3D grid step (0.1 - 0.2 fm, smaller than the length of the probability density oscillations),
 - the classical description of the motion of the centers of nuclei,
 - may be used for light nuclei,
 - quick calculation.

- **Time-dependent Hartree-Fock (TDHF):**
 - self-consistent quantum motion of all nucleons,
 - averaged over a large grid step (0.8 fm), exceeding the length of the oscillations of the probability density for the individual states,
 - used for heavy and medium-mass nuclei only,
 - long calculation.

- **Langevin equations:**
 - equations of classical mechanics with stochastic forces together including mass asymmetry degrees of freedom,
 - used for heavy and medium-mass nuclei,
 - no quantum description of the individual nucleons.

- **Distorted wave Born approximation (DWBA):**
 - calculation of the differential cross section for specific channels,
 - takes into account the explicit form of the wave functions of the initial and the final collective or single-particle states (within the perturbation theory) using phenomenological optical nucleus-nucleus potentials,
 - does not provide a dynamic picture.

These methods have shortcomings:
Benefits of time-dependent Schrödinger equation approach

- quantum description of several independent external neutrons,
- small 3D mesh step (0.1 - 0.2 fm, smaller than the length of the probability density oscillations),
- classical description of the motion of centers of nuclei,
- may be used for light nuclei,
- fast calculation,
- intuitive visualization of dynamics.

Fig. 13.

The change in the probability density and the rearrangement of the valence neutron of the 6He nucleus during a collision with the 197Au nucleus at $E_{cm} = 19$ MeV, $b = 4$ fm. The course of time corresponds to panels (a) - (d). The mesh spacing is 0.2 fm.
Time-dependent Schrödinger equation approach for transfer and break up channels

$$\rho(\vec{r}, t) = \frac{1}{4} \sum_{m_j=-\frac{3}{2}}^{\frac{3}{2}} \left[|\Psi_{m_j}(\vec{r}, t)|^2 + |\Phi_{m_j}(\vec{r}, t)|^2 \right] \quad \Psi_{m_j}(\vec{r}, t = 0) = \begin{cases} \Psi_{\frac{1}{3}/2, m_j}(\vec{r}) \\ \Phi_{\frac{1}{3}/2, m_j}(\vec{r}) \end{cases}.$$

In this work, we perform a numerical solving of Eq. (2) in a system moving with respect to the laboratory system with constant velocity equal to that of a projectile nucleus at a fair distance from the target nucleus, due to the large extension of nucleon clouds in 8Li and 8B. This allows us to reduce the mesh size and shorten the time needed for calculations.

In our calculations, the mesh size was $\hbar = 0.3$ fm, and the typical volume of the region was 8×10^5 fm3 for a mesh of $220 \times 360 \times 380$ cells with the largest number of nodes in the collision plane. Calculations of the process of nuclei collision required several thousand time steps.

Fig. 3. Evolution of the probability density for an outer neutron of 8Li with initial state $1p_{3/2}$ in collision 8Li + 28Si (a, b, c) for $E_{c.m.} = 10$ MeV, $E_{lab} = 1.6$ MeV/nucleon, along with impact parameter $b = 10$ fm and (d, e, f) for $E_{c.m.} = 186$ MeV, $E_{lab} = 30$ MeV/nucleon, $b = 9$ fm in a reference system moving relative to the laboratory system with a constant velocity equal to that of a projectile at a fairly large distance from the target nucleus. Time runs top-down. Greyscale gradation in the logarithmic scale corresponds to ranges (a, b, d, e) from 5×10^{-10} to 0.008 and (c, f) from 2×10^{-7} to 0.008. The radii of the circles correspond to those of nuclear cores of 2.4 fm and 3.8 fm, respectively.
The amplitude of the probability for the nucleon to remain in initial state $1p_{3/2}$ of the projectile nucleus at time t is

$$c(t) = \sum_{n_{j}=-3/2}^{3/2} \frac{1}{4} \times \sum_{m_{j}=3/2}^{3/2} \int \left[\Psi_{n_{j}m_{j}}^{(0)}(\vec{r},t)\psi_{m_{j}}(\vec{r},t) + \bar{\Psi}_{n_{j}m_{j}}^{(0)}(\vec{r},t)\bar{\phi}_{m_{j}}(\vec{r},t) \right] dV,$$

where the wave function of state $1p_{3/2}$ with the projection of total momentum m_{j} in a projectile nucleus moving with slowly varying velocity $\vec{v}(t)$ is

$$\Psi_{m_{j}}^{(0)}(\vec{r},t) = \begin{pmatrix} \Psi_{m_{j}}^{(0)}(\vec{r},t) \\ \phi_{m_{j}}^{(0)}(\vec{r},t) \end{pmatrix} = \begin{pmatrix} \psi_{m_{j}}(\vec{r} - \vec{r}(t)) \\ \phi_{m_{j}}^{(0)}(\vec{r} - \vec{r}(t)) \end{pmatrix} \exp\left(i\frac{1}{\hbar}m\vec{v}(t)\vec{r} \right).$$

Total probability P_{loss} of neutron loss by the projectile nucleus can be determined as a reduction in the population of the state $1p_{3/2}$

$$P_{\text{loss}}(t) = \sum |a_k(t)|^2, \quad P_{\text{loss}}(t) = 1 - |c(t)|^2$$

$$a_k(t) = \int \left[\psi_{k}^{*}(\vec{r},t)\psi(\vec{r},t) + \bar{\psi}_{k}^{*}(\vec{r},t)\bar{\phi}(\vec{r},t) \right] dV$$

The wave function of the k-th bound state in a target nucleus moving after colliding with slowly varying velocity $\vec{v}(t)$ is

$$\psi_{k}(\vec{r},t) = \begin{pmatrix} \Psi_{k}(\vec{r},t) \\ \phi_{k}(\vec{r},t) \end{pmatrix} = \begin{pmatrix} \psi_{k}(\vec{r} - \vec{r}(t)) \\ \phi_{k}(\vec{r} - \vec{r}(t)) \end{pmatrix} \exp\left(i\frac{1}{\hbar}m\vec{v}(t)\vec{r} \right).$$

Fig. 5. (Solid curves) $P_{\text{loss}}(\tau)$ and (dashed curves) $P_d(\tau)$ as functions of dimensionless time $\tau = t/t_0$, $t_0 = 1.57 \times 10^{-23}$ s for collisions (a) $^8\text{Li} + ^{28}\text{Si}$ and (b) $^8\text{B} + ^{28}\text{Si}$, energies (a) $E_{\text{c.m.}} = 10$ MeV, $E_{\text{lab}} = 1.6$ MeV/nucleon and (b) $E_{\text{c.m.}} = 25$ MeV, $E_{\text{lab}} = 4$ MeV/nucleon, and impact parameters (a) $b = 7$ fm (curves 1), $b = 10$ fm (curves 2), $b = 13$ fm (curves 3); (b) $b = 7$ fm (curves 1), $b = 8$ fm (curves 2), $b = 10$ fm (curves 3).
Calculations of the neutron loss and transfer cross sections

\[\sigma_{\text{loss}}(E) = 2\pi \int_{b_{\text{min}}}^{\infty} p_{\text{loss}}(b, E)[1 - f(R_{\text{min}})] b \, db, \]
(17)

\[\sigma_{\text{tr}}(E) = 2\pi \int_{b_{\text{min}}}^{\infty} p_{\text{tr}}(b, E)[1 - f(R_{\text{min}})] b \, db, \]
(18)

\[p_{\text{tr}}(b, E) = \min\{\tilde{P}_{\text{tr}}(R_{\text{min}}(b, E)), 1\}, \quad (19) \]

\[p_{\text{tr}}(b, E) = \min\{\tilde{P}_{\text{tr}}(R_{\text{min}}(b, E)), 1\}. \quad (20) \]

\[f(R_{\text{min}}) = \frac{1}{1 + \exp\left(\frac{R_{\text{min}} - R_{t}}{a_{t}}\right)} \]

Fig. 16.

We used approximations:

the natural set of parameters

\[R_{t} \approx \frac{1}{2}(R_{\text{cont}} + R_{t}), \quad a_{t} \approx \frac{1}{2}(R_{t} - R_{\text{cont}}) \]

\[R_{t} = 7 \text{ fm}, \quad a_{t} = 1 \text{ fm}. \quad R_{\text{cont}} = R_{1} + R_{2} \]

\[P_{\text{tr}} \approx \tilde{P}_{\text{tr}}(R_{\text{min}}) = \exp(A_{\text{tr}} - B_{\text{tr}}R_{\text{min}}). \]

\[P_{\text{loss}} \approx \tilde{P}_{\text{loss}}(R_{\text{min}}) = \exp(A_{\text{loss}} - B_{\text{loss}}R_{\text{min}}) \]

Fig. 7. Calculated loss cross section \(\sigma_{\text{loss}}(E_{\text{c.m.}}) \) and transfer cross section \(\sigma_{\text{tr}}(E_{\text{c.m.}}) \) for outer neutron of \(^{6}\text{Li} \) in reaction \(^{6}\text{Li} + ^{28}\text{Si} \) for two values of the average fusion radius of nuclei \(R_{t} \): \(R_{t} = 7 \) fm (dashed curves) \(\sigma_{\text{loss}}(E_{\text{c.m.}}), \) (dotted curves) \(\sigma_{\text{tr}}(E_{\text{c.m.}}), \) and \(R_{t} = 4.9 \) fm (solid curves) \(\sigma_{\text{loss}}(E_{\text{c.m.}}), \) (dashed-and-dotted curves) \(\sigma_{\text{tr}}(E_{\text{c.m.}}). \) The experimental point is the value of \(\sigma_{\text{loss}}(E_{\text{c.m.}}) \) for \(^{6}\text{Li} + ^{28}\text{Si} \) in [7].

23
Conclusions

• The distributions over the number of triggered detectors of a segmented γ-spectrometer were measured and used for obtaining of total reaction cross sections for 8Li, 8He + 28Si, 8Li, 8He + 59Co, 8Li, 8He + 181Ta reactions in the 10–40 A MeV range of energies.

• The resulting experimental total cross sections of reaction 8Li, 8He + 28Si are in good agreement with the literature results and cover the range of energies not investigated earlier. The larger total cross sections of reactions on 59Co, and 181Ta targets can be explained in a simple approximation by the larger sizes of these nuclei.

• The multiplicities of emitted neutrons are explained using fusion evaporation channels calculations.

• The neutron transfer and neutron remove channels are studied using numerical solving of time-dependent Schrödinger equation.
Thank You