The yields of the nuclei formed in the ²³⁷Np and ²⁴¹Am samples irradiated by the neutron field.

Brukva A.E.¹, Khushvaktov J.¹, Kobets V.V.¹, Kryachko I.A.¹, Rasulova F.A.¹, Shakun N.G.¹, Stegailov V.I.¹, Tran T.N.^{1,2}, Yuldashev B.S.¹, Tyutyunnikov S.I.¹, Rozov S.V.¹, Perevoshikov L.L.¹, Guseva S.V.¹, Balandin A.S.¹

¹ - Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow region, Russia, 141980
 ² - Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam e-mail: stegajlov2013@yandex.ru

Коллаборация « Энергия + Трансмутация » ОИЯИ, Дубна, 2020 г.

Содержание

Введение

I. Экспериментально-методическая база

II. Методика определения абсолютной эффективности при измерении гамма-спектров неидеальных образцов в неидеальных условиях.

III. Экспериментальные результаты по выходам продуктов
 многочастичных (γ,Хп) реакций и реакций деления, полученные на
 мишенях ²⁰⁹Bi , ²³⁸U, ²³⁷Np и ²⁴¹Am. Сравнение с литературой.
 IV. Экспериментальные результаты по выходам, полученные на

мишени ²³⁷Np при облучении лазерным излучением .

V. Обсуждение полученных результатов.

Заключение

Введение

..Данная работа проводилась в рамках в рамках коллаборации « Энергия + Трансмутация ».

Целью настоящей работы является обоснование методики проведения экспериментов по трансмутации актинидов ²³⁷Np и ²⁴¹Am на пучках заряженных частиц с энергией более 1000МэВ и обоснование методик с использованием лазерного излучения.

..При обработке результатов нами введено понятие реальной абсолютной эффективности системы, которая содержит не точечный образец с детектором. ..Получены выходы многочастичных (Х,н) реакций с использованием мишеней моноизотопа висмута получено хорошее совпадение с литературными данными.

..Далее нами получены массовые распределения продуктов двойного деления урана, что явилось обоснованием правильности и достоверности нашей методики, используемой при изучении актинидов ²³⁷Np и ²⁴¹Am.

..Приводятся результаты экспериментов, связанных с облучением урановой мишени в поле тормозного излучения электроного пучка с энергией 140 МэВ. Представлены массовые распределения продуктов деления образующихся в мишени ²³⁸U и ²³⁷Np.

I. Экспериментально-методическая база

Протонный ускоритель ФАЗОТРОН в ЛЯП Ускоритель НУКЛОТРОН в ЛФВЭ

Линейный ускоритель ЛИНАК-200 в ЛЯП

Лазерный

Nd-лазер в ИОФАН (Москва)

Детекторы гамма-излучения

...Наша коллаборация
...располагает:
а)10 НРGе и 2 Si гаммадетекторами ,
б) ПО для регистрации обработки гамма-

спектров:

- ORTEC MAESTRO 6.08 (регистрация и первичная обработка)

- Deimos 3.5 (основная программа для обработки и разделения мультиплетных гамма-линий)

- Origin 9.0 (финальная обработка и визуализация)

Рис.1. Комната измерения облученных мишеней: детекторы и аппаратура

II. Методика определения *реальной* абсолютной эффективности при измерении гамма-спектров неидеальных образцов в неидеальных условиях.

Параметры ОСГИ

Общая толщина активной части с двумя плёнками - **0,1 мм**.

Диаметр активной части не более 3 мм.

В наших исследованиях используются мишени толщиной 1-3 мм (примерно в 10-30 раз толще чем ОСГИ).

Диаметр мишени 15-21 мм (в 5-7 раз больше чем ОСГИ).

Три основные проблемы реальных образцов:

- неточечность;
- самопоглощение;
- необходимость фильтрации излучения в рентгеновской части спектра.

Рис.14. Положение идеальной и реальной абсолютных эффективностей в измерении спектра мишени ²⁰⁹Ві после облучения на Е_е=60 МэВ

Рис.15. Выходы фотоядерных реакций относительно (ү, 3n) реакции в мишени ²⁰⁹Ві и результаты группы Белышева

Belyshev, S.S., Filipescu, D.M., Gheoghe, I. *et al.* Multinucleon photonuclear reactions on ²⁰⁹Bi: Experiment and evaluation. *Eur. Phys. J. A* **51**, 67 (2015).

Рис.12. Выход изотопов висмута в «таблетке» №2 с учётом нейтронов и без.

Рис.12. Выход изотопов висмута в «таблетке» №2 с учётом нейтронов и без.

Рис.19. Диаграмма образовавшихся ядер в мишени ²³⁸U на пучке е⁻: 1-⁷⁸Ge, 2-⁸⁴Br, 3-⁷⁹Kr, ^{85m}Kr, ⁸⁷Kr, ⁸⁸Kr, 4-⁸⁸Rb, ⁸⁹Rb, 5-⁹¹Sr, ⁹²Sr, 6-^{91m}Y, ⁹²Y, ⁹⁴Y, 7-⁹⁵Zr, ⁹⁷Zr, 8-⁹⁷Nb, 9-^{94m}Tc, ⁹⁵Tc, 10-⁹⁹Pd, 11-¹⁰⁴Cd, 12-¹⁰⁵Ru 13-¹¹²Ag, ¹¹³Ag, 14-^{108m}In, ¹⁰⁹In, ^{114m}In, 15-^{123m}Sn, ¹²⁷Sn, ¹²⁸Sn, 16-¹¹⁷Sb, ¹²⁸Sb, ¹²⁹Sb, ¹³⁰Sb, 17-¹³¹Te, ^{133m}Te, ¹³⁴Te, 18-¹²³I, ¹³²I, ¹³³I, ¹³⁴I, ¹³⁵I, 19-¹³⁵Xe, ^{135m}Xe, 20-¹³⁸Cs, 21-¹⁴¹Ce, 22-¹⁴²La, 23-¹⁴⁶Pr, 24-¹⁴⁹Nd

Рис.20. Выходы продуктов деления ²³⁸U на пучке электронов, E_{e} = 140 МэВ: 1- ⁷⁸Ge, 2- ⁷⁹Kr, 3- ⁸⁴Br, 4- ⁸⁵Kr, 5- ⁸⁹Rb, 6- ⁹⁴Y,^{94m}Tc, 7- ⁹⁷Zr,⁹⁷Nb, 8- ⁹⁹Pd, 9- ¹⁰⁴Cd, 10- ¹⁰⁵Rh, 11- ¹¹²Ag, 12- ^{114m}In, 13- ¹¹⁷Sb, 14- ¹²³I, 15- ¹²⁷Sn, 16- ¹²⁸Sn, ¹²⁸Sb, 17- ¹²⁹Sb, 18- ¹³⁰Sb, 19- ¹³²I, 20- ¹³³I, ¹³³Te, 21- ¹³⁴I, ¹³⁴Te, 22- ¹³⁵I, ^{135m}Xe, 23- ¹³⁸Cs, 24- ¹⁴¹Ce, ¹⁴¹Ba, 25- ¹⁴²La, 26- ¹⁴⁶Pr, 27- ¹⁴⁹Nd.

Fission products from ²³⁷Np irradiated by neutron field of "QUINTA"-setup from proton beam with E = 660 MeV.

Изменение периода полураспада ядра ²³⁹Np (Т¹/2=2.36 д) под действием лазерного излучения.

Экспериментальная установка для исследования взаимодействия мощного лазерного излучения с радиоактивным раствором ¹³⁷Cs.

Np-237 fission and capture rate for each experiment.

Обсуждение полученных результатов

1. Использовано понятие реальной абсолютной эффективности в системе, которая содержит неточечный образец с детектором и алгоритм её определения.

2. Анализ реакций (ү, Хл), наблюдаемых в проведённых экспериментах для мишени ²⁰⁹Ві и выводы по определению выходов реакций сделаны на основе использования именно понятия реальной абсолютной эффективности. 3.Сравнение реакций деления, наблюдаемых в проведённых экспериментах для мишеней ²⁰⁹Bi, ²³⁸U, ²³⁷Np и ²⁴¹Am на фазотроне и ускорителе электронов позволило определить возможности ЛИНАК-200 для целей трансмутации в рамках нашей программы и сравнить полученные результаты с результатами облучения на пучках заряженных частиц с энергией более 1000 МеВ, и что позволяет оценить аналогичные экспериментальные ситуации в условиях мультифрагментации, т.е. при больших (более 1000 МеВ) энергиях.

СПАСИБО ЗА ВНИМАНИЕ!