ЭКСПЕРИМЕНТАЛЬНЫЕ И ТЕОРЕТИЧЕСКИЕ ОБОСНОВАНИЯ СТРУКТУРЫ УРОВНЕЙ НЕЧ. ЯДЕР ИЗОБАРЫ Yb-Tm-Er-Ho C A=157 (ч.2)

Kalinnikov V.G.¹, **Stegailov V.I.**¹, Izosimov I.N.¹, Solnyshkin A.A.¹, Mitropolsky I.A.², Sushkov A.V.¹, Efimov A.D.^{3,4},Ю.А.Ваганов ¹, Tran T.N.^{1,5}.

1 - Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow region, Russia, 141980.

2 - Petersburg Nuclear Physics Institute named by B.P.Konstantinov of NRC «Kurchatov Institute», Gatchina, Leningradskaya Oblast, Russia, 188300. mitropolsky_ia@pnpi.nrcki.ru

3 - Admiral Makarov State University of Maritime and Inland Shipping, St.Petersburg, Russia 198035. efimov98@mail.ru

4 - Ioffe Institute, St.Petersburg, Russia, 194021. efimov98@mail.ru

5 - Institute of Physics, Vietnam Academy of Science and Technology, Hanoi, Vietnam.

e-mail: stegajlov2013@yandex.ru

сайт ляп <u>http://nuweb.jinr.ru/~yasnapp/</u>

...схемы возбужденныхсостояни ...изомерия

...структура уровней и т.д.

В рамках программы по изучению свойств ядер переходной области (N=88-90; z=67,69) нами завершены исследования н/н ядер ¹⁵⁶Но, ¹⁵⁸Но, ¹⁶⁰Но и начато детальное изучение н/н ядер Tm переходной области: ¹⁵⁸Tm, ¹⁶⁰Tm, ¹⁶²Tm.

В данной работе исследованы на ISOL-комплексе ЯСНАПП-2 радиоактивные распады изотопов Yb-Tm-Er-Ho C A=157 являющиеся носителями квантовых характеристик структуры неч неч ядер ¹⁵⁸Ho и ¹⁵⁸Tm.

Эксперименты проводились на экспериментальном комплексе ЯСНАПП, созданном на базе фазотрона ЛЯП ОИЯИ, в on-line и off-line режимах.

В экспериментах использовались:

-большеобъемные HpGe детекторы (эффективность 20% -70%)

-планарные HpGe детекторы (Ø30мм х 3мм)

-SiLi детекторы (Ø10мм х 3.5мм)

	163 <u>Tb</u>	163 <mark>Dy</mark>	163 <u>Ho</u>	163 <u>Er</u>	163 <mark>Tm</mark>	163 <u>Yb</u>	163 <u>Lu</u>	
163	19.5 min 162.93064	24.9% 162.92872	A1:	57, N88→89		11.05 min 162.93626	238 sec 162.94120	
	162<u>Tb</u> 7.60 min 161.92948	162Dy 25.5% 161.92679	162<u>Ho</u> 15.0 min 161.92909	162<u>Er</u> 0.14% 161.92877	162<u>Tm</u> 21.70 min 161.93393	162<u>Yb</u> 18.87 min 161.93574	162<u>Lu</u> 1.37 min 161.94349	N
161	161<u>Tb</u> 6.88 da 160.92756	161<u>Dy</u> 18.9% 160.92692	161<u>Ho</u> 2.48 hr 160.92785	161<u>Er</u> 3.21 hr 160.93000	161<u>Tm</u> 30.2 min 160.93339	161<u>Yb</u> 4.2 min 160.93785	161<u>Lu</u> 72 sec 160.94354	90
	160<u>Tb</u> 72.3 da 159.92716	160<u>Dy</u> 2.34% 159.92519	160<u>Ho</u> 25.6 min 159.92872	160<u>Er</u> 28.58 hr 159.92908	160<u>Tm</u> 9.4 min 159.9350	160 <u>Yb</u> 4.8 min 159.93756	160 <u>Lu</u> 36.1 sec 159.94602	89
<mark>159</mark>	159<u>Tb</u> 100% 158.92534	1 59<mark>Dy</mark> 144.4 da 158.92573	159<u>Ho</u> 33.05 min 158.92770	159<u>Er</u> 36 min 158.93068	159<u>Tm</u> 9.13 min 158.93481	159<u>Yb</u> 1.58 min 158.94023	158<u>Lu</u> 10.6 sec ◀ 157.94916	88
	158<u>Tb</u> 180 yr 157.92541	158<u>Dy</u> 0.10% 157.92440	158<u>Ho</u> 11.3 min 157.92894	158<u>Er</u> 2.29 hr 157.92990	158Tm 3.98 min 157.93699	158<u>Yb</u> 1.49 min 157-93985	158<u>Lu</u> 10.6 sec 157.94916	
157	157<u>Tb</u> 71 yr 156.92402	157 Dy 8.14 hr 156.92546	157<u>Ho</u> 12.6 min 156.92819	157<u>Er</u> 18.65 min 156.93194	157 <u>Tm</u> 3.63 min 156.93675	157<u>Yb</u> 38.6 sec 156.94266	157<u>Lu</u> 6.8 sec 156.95010	
	156<u>Tb</u> 5.35 da 155.92474	156<u>Dy</u> 0.06% 155.92427	156<u>Ho</u> 56 min 155.92971	156<u>Er</u> 19.5 min 155.93118	156<u>Tm</u> 83.8 sec 155.93892	156<u>Yb</u> 26.1 sec 155.94276	156<u>Lu</u> 0.73 sec 155.95287	
<mark>155</mark>	155<u>Tb</u> 5.32 da 154.92350	155<u>Dy</u> 9.9 hr 154.92574	155<u>Ho</u> 48 min 154.92907	155<u>Er</u> 5.3 min 154.93320	155<u>Tm</u> 21.6 sec 154.93919	155<u>Yb</u> 1.75 sec 154.94557	155<u>Lu</u> 140 msec 154.95415	
	154<u>Tb</u> 21.5 hr 153.92469	154<u>Dy</u> 3.0E+6 yr 153.92442	154<u>Ho</u> 11.76 min 153.93059	154<u>Er</u> 3.73 min 153.93277	154<u>Tm</u> 8.1 sec 153.94142	154<u>Yb</u> 0.404 sec 153.94624	154<u>Lu</u> 1.12 sec 153.95705	
<mark>153</mark>	153<u>Tb</u> 2.34 da 152.92343	153<u>Dy</u> 6.4 hr 152.92576	153<u>Ho</u> 2.02 min 152.93019	153<u>Er</u> 37.1 sec 152.93509	153<u>Tm</u> 1.48 sec 152.94202	153 <u>Yb</u> 4.2 sec 152.94922	153<u>Lu</u> 152.95866	
	7 65		67		69		71	

Исходные принцилы:

Для обоснования <u>n,p</u>структуры уровней н.н. ядер Но (156-158) мы использовали (как базис) свои экспериментальные данные, (а также правило Галлахера-Мошковского (Г.М.) и данные теоретических расчетов.)

1) γ, e⁻

 $K_x - \gamma, \gamma - \gamma - t$, гамма.

- 2) Подход Галлахера-Мошковского с использованием Ω [N_{nz}λ] для неч. ядер Но и Dy.
- 3) Квазичастично-фононная модель с потенциалом Саксона-Вудса.

Структура уровней в ядрах Но в области Z = 67, N= 89 - 93 определяется в основном наборами асимптотических квантовых чисел орбиталей p[523], n[521], n[651], n[505], p[404], p[402], p[411], которые и характеризуют процессы бета и гамма распада в этих ядрах.

Зависимость энергий неротационных состояний для нечетнопротонных ядер Но и Dy, использованная нами при интерпретации структур нечетно-нечетных ядер Но(А=156, 158, 160) в соответствии с (Г.М.), представлена на следующем рисунке.

	163 <u>Tb</u>	163 <mark>Dy</mark>	163 <u>Ho</u>	163 <u>Er</u>	163 <mark>Tm</mark>	163 <u>Yb</u>	163 <u>Lu</u>	
163	19.5 min 162.93064	24.9% 162.92872	A1:	57, N88→89		11.05 min 162.93626	238 sec 162.94120	
	162<u>Tb</u> 7.60 min 161.92948	162Dy 25.5% 161.92679	162<u>Ho</u> 15.0 min 161.92909	162<u>Er</u> 0.14% 161.92877	162<u>Tm</u> 21.70 min 161.93393	162<u>Yb</u> 18.87 min 161.93574	162<u>Lu</u> 1.37 min 161.94349	N
161	161<u>Tb</u> 6.88 da 160.92756	161<u>Dy</u> 18.9% 160.92692	161<u>Ho</u> 2.48 hr 160.92785	161<u>Er</u> 3.21 hr 160.93000	161<u>Tm</u> 30.2 min 160.93339	161<u>Yb</u> 4.2 min 160.93785	161<u>Lu</u> 72 sec 160.94354	90
	160<u>Tb</u> 72.3 da 159.92716	160<u>Dy</u> 2.34% 159.92519	160<u>Ho</u> 25.6 min 159.92872	160<u>Er</u> 28.58 hr 159.92908	160<u>Tm</u> 9.4 min 159.9350	160 <u>Yb</u> 4.8 min 159.93756	160 <u>Lu</u> 36.1 sec 159.94602	89
<mark>159</mark>	159<u>Tb</u> 100% 158.92534	1 59<mark>Dy</mark> 144.4 da 158.92573	159<u>Ho</u> 33.05 min 158.92770	159<u>Er</u> 36 min 158.93068	159<u>Tm</u> 9.13 min 158.93481	159<u>Yb</u> 1.58 min 158.94023	158<u>Lu</u> 10.6 sec ◀ 157.94916	88
	158<u>Tb</u> 180 yr 157.92541	158<u>Dy</u> 0.10% 157.92440	158<u>Ho</u> 11.3 min 157.92894	158<u>Er</u> 2.29 hr 157.92990	158Tm 3.98 min 157.93699	158<u>Yb</u> 1.49 min 157-93985	158<u>Lu</u> 10.6 sec 157.94916	
157	157<u>Tb</u> 71 yr 156.92402	157 Dy 8.14 hr 156.92546	157<u>Ho</u> 12.6 min 156.92819	157<u>Er</u> 18.65 min 156.93194	157 <u>Tm</u> 3.63 min 156.93675	157<u>Yb</u> 38.6 sec 156.94266	157<u>Lu</u> 6.8 sec 156.95010	
	156<u>Tb</u> 5.35 da 155.92474	156<u>Dy</u> 0.06% 155.92427	156<u>Ho</u> 56 min 155.92971	156<u>Er</u> 19.5 min 155.93118	156<u>Tm</u> 83.8 sec 155.93892	156<u>Yb</u> 26.1 sec 155.94276	156<u>Lu</u> 0.73 sec 155.95287	
<mark>155</mark>	155<u>Tb</u> 5.32 da 154.92350	155<u>Dy</u> 9.9 hr 154.92574	155<u>Ho</u> 48 min 154.92907	155<u>Er</u> 5.3 min 154.93320	155<u>Tm</u> 21.6 sec 154.93919	155<u>Yb</u> 1.75 sec 154.94557	155<u>Lu</u> 140 msec 154.95415	
	154<u>Tb</u> 21.5 hr 153.92469	154<u>Dy</u> 3.0E+6 yr 153.92442	154<u>Ho</u> 11.76 min 153.93059	154<u>Er</u> 3.73 min 153.93277	154<u>Tm</u> 8.1 sec 153.94142	154<u>Yb</u> 0.404 sec 153.94624	154<u>Lu</u> 1.12 sec 153.95705	
<mark>153</mark>	153<u>Tb</u> 2.34 da 152.92343	153<u>Dy</u> 6.4 hr 152.92576	153<u>Ho</u> 2.02 min 152.93019	153<u>Er</u> 37.1 sec 152.93509	153<u>Tm</u> 1.48 sec 152.94202	153 <u>Yb</u> 4.2 sec 152.94922	153<u>Lu</u> 152.95866	
	7 65		67		69		71	

Схема распада 157 Yb \rightarrow 157 Tm [3] обоснована результатами измерений ү-ү-совпадений. На основе измерения спектров электронов конверсии, при распаде ¹⁵⁷Yb, нами определены КВК ряда переходов и установлены характеристики І^π некоторых возбужденных состояний (105.7 кэВ, I^π=3/2⁺; 164.7 кэВ, I^π=3/2⁻; 231.1 кэВ, I^π=3/2⁺; 347.8 кэВ, I^π=5/2⁺; 353.9 кэВ, $I^{\pi}=5/2^{-})$, а также характеристики I^{π} изомерного состояния 35.3 кэВ. Данное состояние заселяется упереходом 129.3 кэВ типа Е2 с уровня 164.5 кэВ, который высвечивается Е1-переходом в основное состояние ¹⁵⁷Tm (1/2⁺). Отсюда следует, что изомер, вероятно, имеет характеристики $I^{\pi}=7/2^{-}$.

Наши данные

	163 <u>Tb</u>	163 <mark>Dy</mark>	163 <u>Ho</u>	163 <u>Er</u>	163 <mark>Tm</mark>	163 <u>Yb</u>	163 <u>Lu</u>	
163	19.5 min 162.93064	24.9% 162.92872	A1:	57, N88→89		11.05 min 162.93626	238 sec 162.94120	
	162<u>Tb</u> 7.60 min 161.92948	162Dy 25.5% 161.92679	162<u>Ho</u> 15.0 min 161.92909	162<u>Er</u> 0.14% 161.92877	162<u>Tm</u> 21.70 min 161.93393	162<u>Yb</u> 18.87 min 161.93574	162<u>Lu</u> 1.37 min 161.94349	N
161	161<u>Tb</u> 6.88 da 160.92756	161<u>Dy</u> 18.9% 160.92692	161<u>Ho</u> 2.48 hr 160.92785	161<u>Er</u> 3.21 hr 160.93000	161<u>Tm</u> 30.2 min 160.93339	161<u>Yb</u> 4.2 min 160.93785	161<u>Lu</u> 72 sec 160.94354	90
	160<u>Tb</u> 72.3 da 159.92716	160<u>Dy</u> 2.34% 159.92519	160<u>Ho</u> 25.6 min 159.92872	160<u>Er</u> 28.58 hr 159.92908	160<u>Tm</u> 9.4 min 159.9350	160 <u>Yb</u> 4.8 min 159.93756	160 <u>Lu</u> 36.1 sec 159.94602	89
<mark>159</mark>	159<u>Tb</u> 100% 158.92534	1 59<mark>Dy</mark> 144.4 da 158.92573	159<u>Ho</u> 33.05 min 158.92770	159<u>Er</u> 36 min 158.93068	159<u>Tm</u> 9.13 min 158.93481	159<u>Yb</u> 1.58 min 158.94023	158<u>Lu</u> 10.6 sec ◀ 157.94916	88
	158<u>Tb</u> 180 yr 157.92541	158<u>Dy</u> 0.10% 157.92440	158<u>Ho</u> 11.3 min 157.92894	158<u>Er</u> 2.29 hr 157.92990	158Tm 3.98 min 157.93699	158<u>Yb</u> 1.49 min 157-93985	158<u>Lu</u> 10.6 sec 157.94916	
157	157<u>Tb</u> 71 yr 156.92402	157 Dy 8.14 hr 156.92546	157<u>Ho</u> 12.6 min 156.92819	157<u>Er</u> 18.65 min 156.93194	157 <u>Tm</u> 3.63 min 156.93675	157<u>Yb</u> 38.6 sec 156.94266	157<u>Lu</u> 6.8 sec 156.95010	
	156<u>Tb</u> 5.35 da 155.92474	156<u>Dy</u> 0.06% 155.92427	156<u>Ho</u> 56 min 155.92971	156<u>Er</u> 19.5 min 155.93118	156<u>Tm</u> 83.8 sec 155.93892	156<u>Yb</u> 26.1 sec 155.94276	156<u>Lu</u> 0.73 sec 155.95287	
<mark>155</mark>	155<u>Tb</u> 5.32 da 154.92350	155<u>Dy</u> 9.9 hr 154.92574	155<u>Ho</u> 48 min 154.92907	155<u>Er</u> 5.3 min 154.93320	155<u>Tm</u> 21.6 sec 154.93919	155<u>Yb</u> 1.75 sec 154.94557	155<u>Lu</u> 140 msec 154.95415	
	154<u>Tb</u> 21.5 hr 153.92469	154<u>Dy</u> 3.0E+6 yr 153.92442	154<u>Ho</u> 11.76 min 153.93059	154<u>Er</u> 3.73 min 153.93277	154<u>Tm</u> 8.1 sec 153.94142	154<u>Yb</u> 0.404 sec 153.94624	154<u>Lu</u> 1.12 sec 153.95705	
<mark>153</mark>	153<u>Tb</u> 2.34 da 152.92343	153<u>Dy</u> 6.4 hr 152.92576	153<u>Ho</u> 2.02 min 152.93019	153<u>Er</u> 37.1 sec 152.93509	153<u>Tm</u> 1.48 sec 152.94202	153 <u>Yb</u> 4.2 sec 152.94922	153<u>Lu</u> 152.95866	
·	7 65		67		69		71	

СХЕМА РАСПАДА 157Er--157Ho ОБОСНОВАНА В ТОМ ЧИСЛЕ И УСТАНОВЛЕНИЕМ 220 ГАММА ПЕРЕХОДОВ И ИХ ИНТЕНСИВНОСТЕЙ (см табл.)

Еү, кэВ	Іү, отн. Ед.	Еү, кэВ	Іү, отн. Ед.	Еү, кэВ	Іү, отн. Ед.
1	2	3	4	5	6
K _X (Ho)	8165 ± 800	162,3 ± 0,3	120 ± 3	357,1 ± 0,1	60 ± 15
38,66 ± 0,05	12,5 ± 2,5	166,6 ± 0,3	6 ± 2	371,4 ± 0,1	65 ± 13
39,40 ± 0,05	8,4 ± 1,7	170,96 ± 0,11	14 ± 3	374,5 ± 0,2	18 ± 5
$40,84 \pm 0,05$	162 ± 16	175,5 ± 0,2	13 ± 4	385,5 ± 0,2	60 ± 15
53,14 ± 0,05	2834 ± 285	179,2 ± 0,2	30 ± 10	391,10 ± 0,02	1450 ± 75
55,45 ± 0,15	< 20	180,0 ± 0,2	85 ± 20	396,0 ± 0,2	8 ± 3
57,17 ± 0,07	50 ± 5	182,23 ± 0,03	47 ± 8	398,2 ± 0,2	10 ± 3
66,937 ± 0,012	185 ± 15	183,42 ± 0,04	35 ± 7	408,8 ± 0,2	8 ± 3
68,91 ± 0,03	9 ± 1	203,7 ± 0,1	12,5 ± 0,30	423,3 ± 0,2	10 ± 3
83,52 ± 0,02	76 ± 7	205,6 ± 0,1	13,3 ± 3,3	427,6 ± 0,2	22 ± 7
84,4 ± 0,1	6,1 ± 2,0	211,9 ± 0,1	16 ± 4	431,1 ± 0,1	80 ± 12
85,60 ± 0,03	15 ± 3	216,8 ± 0,1	21 ± 5	438,1 ± 0,2	17 ± 4
94,5 ± 0,2	10 ± 3	219,3 ± 0,1	35 ± 7	439,6 ± 0,2	16 ± 4
100,0 ± 0,2	10 ± 3	236,6 ± 0,1	28 ± 7	443,4 ±0,2	10 ± 3
104,47 ± 0,05	10 ± 2	241,5 ± 0,1	18 ± 5	451,9 ±0,2	16 ± 4
110,49 ± 0,04	14 ± 2	264,7 ± 0,1	24 ± 5	455,2 ±0,1	38 ± 3
121,482 ± 0,012	1000	290,6 ± 0,2	6 ± 2	460,6 ± 0,2	9 ± 3
125,75 ±0,06	12 ± 3	299,0 ± 0,1	27 ± 9	474,3 ±0,3	6 ±2
136,52 ± 0,07	15 ± 3	303,49 ± 0,05	130 ± 15	479,0 ±0,2	15 ±5
141,47 ± 0,06	13 ± 3	305,2 ± 0,1	56 ± 11	481,3 ±0,3	9 ± 3
144,45 ± 0,10	11 ± 3	308,3 ± 0,1	70 ± 11	483,7 ±0,2	15 ± 4
150,52 ± 0,02	200 ± 20	347,36 ± 0,05	175 ± 35	488,1 ±0,3	7 ±2
161,18 ± 0,04	28 ± 8	349,0 ± 0,1	63 ± 14	493,2 ± 0,2	21 ±5

Еү, кэВ	Іү, отн. Ед.	Еү, кэВ	Iү, отн. Ед.	Εγ, κэΒ	Iү, отн. Ед.
1	2	3	4	5	6
$(497,5 \pm 0,4)$	4 ±2	611,2 ± 0,2	80 ± 20	721,9 ± 0,3	55 ± 11
501,6 ± 0,3	16 ± 4	614,8 ± 0,3	20 ± 5	724,2 ± 0,4	19 ± 5
503,5 ± 0,1	166 ± 24	622,2 ± 0,4	28 ± 7	727,4 ± 0,3	19 ± 5
513,7 ± 0,2	90 ± 30	624,4 ± 0,3	42 ± 10	732,6 ± 0,3	11 ± 3
518,0 ± 0,1	93 ± 14	628,0 ± 0,4	22 ± 7	734,6 ± 0,3	16 ± 4
524,3 ± 0,3	17 ± 5	630,8 ± 0,3	46 ± 11	736,6 ± 0,3	16 ± 4
527,9 ± 0,1	100 ± 15	638,4 ± 0,4	21 ± 5	741,6 ± 0,3	12 ± 4
530,8 ± 0,2	8 ± 3	640,6 ± 0,3	50 ± 12	747,3 ± 0,3	55 ± 11
535,3 ± 0,3	12 ± 4	644,3 ± 0,4	30 ± 8	752,7 ± 0,3	35 ± 9
537,0 ± 0,3	12 ± 4	648,0 ± 0,2	75 ± 18	755,0 ± 0,3	12 ± 4
538,6 ± 0,3	10 ± 3	652,0 ± 0, 2	80 ± 20	(759,2 ± 0,5)	6 ± 2
544,3 ± 0,3	8 ± 3	655,7 ± 0,3	15 ± 4	762,7 ± 0,4	13 ± 4
546,1 ± 0,3	3 ± 3	657,8 ± 0,4	10 ± 3	765,9 ± 0,3	38 ± 9
549,4 ± 0,1	322 ± 48	665,0 ± 0,4	8 ± 3	768,7 ± 0,4	15 ± 5
564,6 ± 0,2	22 ± 5	672,1 ± 0,3	45 ± 11	773,0 ± 0,3	22 ± 7
570,2 ± 0,2	45 ± 9	674,0 ± 0,3	36 ± 9	781,2 ± 0,4	15 ± 5
574,1 ± 0,2	68 ± 13	677,1 ± 0,4	13 ± 4	784,1 ± 0,4	15 ± 5
584,2 ± 0,2	70 ± 14	681,1 ± 0,4	28 ± 7	786,2 ± 0,2	50 ± 12
587,4 ± 0,3	26 ± 7	687,6 ± 0,3	60 ± 15	792,5 ± 0,3	33 ± 11
594,8 ± 0,3	9 ± 3	690,8 ± 0,3	28 ± 7	807,4 ± 0,2	44 ± 11
$600,4 \pm 0,2$	17 ± 4	693,7 ± 0,3	30 ± 8	824,4 ± 0,4	20 ± 5
$605,2 \pm 0,3$	12 ± 4	711,4 ± 0,4	19 ± 5	847,5 ± 0,4	20 ± 5
$608,4 \pm 0,3$	15 ± 5	718,9 ± 0,4	17 ± 5	849,8 ± 0,4	35 ± 9

Еү, кэВ	Іү, отн. Ед.	Εγ, κэΒ	Іү, отн. Ед.	Εγ, κэΒ	Іү, отн. Ед.
1	2	3	4	5	6
863,9 ± 0,3	22 ± 6	1128,6 ± 0,4	18 ± 6	1392,5 ± 0,4	25 ± 8
874,5 ± 0,4	16 ± 4	1142,6 ± 0,3	45 ± 15	1396,7 ± 0,3	60 ± 15
876,7 ± 0,4	18 ± 5	1154,5 ± 0,4	33 ± 11	1410,5 ± 0,5	18 ± 6
882,6 ± 0,3	16 ± 4	1165,9 ± 0,4	21 ± 7	1422,0 ± 0,3	120 ± 25
889,3 ± 0,3	40 ± 12	1171,2 ± 0,5	16 ± 5	1432,0 ± 0,5	36 ± 9
891,5 ± 0,5	20 ± 7	1174,1 ± 0,4	27 ± 9	1441,0 ± 0,4	21 ± 7
902,0 ± 0,5	12 ± 4	1178,5 ± 0,5	16 ± 5	1473,5 ± 0,4	25 ± 8
905,2 ± 0,5	9 ± 3	1184,6 ± 0,4	18 ± 6	1487,7 ± 0,5	15 ± 5
909,2 ± 0,6	8 ± 3	1196,0 ± 0,5	20 ± 5	1529,0 ± 0,4	15 ± 5
911,4 ± 0,3	25 ± 8	1199,5 ± 0,5	15 ± 15	1537,3 ± 0,4	25 ± 8
916,0 ± 0,4	25 ± 8	1206,9 ± 0,5	36 ± 9	1545,7 ± 0,5	25 ± 8
$940,4 \pm 0,4$	12 ± 3	1218,0 ± 0,5	21 ± 7	1556,1 ± 0,4	30 ± 10
951,2 ± 0,5	7 ± 3	1222,8 ± 0,5	33 ± 11	1561,8 ± 0,4	40 ± 13
978,8 ± 0,4	28 ± 9	1243,2 ± 0,3	70 ± 14	1587,0 ± 0,5	30 ± 10
$982,2 \pm 0,4$	28 ± 9	1256,2 ± 0,3	42 ± 14	1600,4 ± 0,5	25 ± 8
$988,8 \pm 0,4$	18 ± 6	1264,0 ± 0,3	27 ± 9	1639,6 ± 0,5	30 ± 10
997,5 ± 0,3	25 ± 8	1291,5 ± 0,5	30 ±10	1649,6 ± 0,5	21 ± 7
1025,8 ± 0,4	22 ± 7	1313,8 ± 0,4	24 ± 8	1660,0 ± 0,5	18 ± 6
1030,7 ± 0,5	10 ± 3	1332,2 ± 0,4	33 ± 11	1680,6 ± 0,5	18 ± 6
1058,6 ± 0,5	10 ± 3	1337,2 ± 0,4	27 ± 9	1687,4 ± 0,5	30 ±10
1105,8 ± 0,3	24 ± 8	1345,7 ± 0,4	27 ± 9	1691,5 ± 0,5	45 ±15
$1114,8 \pm 0,3$	28 ± 9	1372,6 ± 0,4	30 ± 10	1711,8 ± 0,5	24 ± 8
1124,8 ± 0,3	40 ± 12	1375,5 ± 0,5	27 ± 9		

Er160,Er158 :выше были представлены эксперимент.результаты.

Квантовые характеристики возбужденных состояний н.н. ядер Но определены нами также с привлечением теоретических расчетов в рамках квазичастично-фононной модели с потенциалом Саксона-Вудса, а также на основе подхода (Г.М.) с использованием квантовых характеристик четно-нечетных ядер Но и Dy с <u>A=155,157,159</u>, полученных нами экспериментально [3,4].(след.сл.)

В результате теоретических расчетов определены главные компоненты слагаемых орбиталей.

Проанализировано наличие F-запрета. Полученные результаты сравнивались с нашими экспериментальными результатами [1]. В итоге, первому возбужденному состоянию в вышеназванных ядрах Ho с $I^{\pi} = 2^{-}$ приписаны следующие конфигурации: <u>p7/2⁻[523^]</u> – n3/2⁺[651^], p1/2⁺[411] + n3/2⁻[521^], p7/2⁺[404] – n3/2⁻[521^]. (сл.№12,14,)

См. схемы распада: 160Er,158Er.

¹⁵⁸Ho 67

off+(on-line),г,г-г, t,

.... Наши выводы согласуются с данными работы [5] по изучению деформации ядер Но лазерными методами, но в данной работе при интерпретации первого возбужденного состояния в ядрах 158Ho и160Ho в качестве главной орбитали создающей запрет, берется 7/2[404] ,а у нас 7/2 [411]. Сейчас мы этим занимаемся.

Основные результаты

- 1. Завершено исследование схем распада ядер ИЗОБАРЫ Yb-Tm-Er-Ho с A157
- 2. В рамках квазичастично-фононной модели выполнены расчеты структуры двуквазичастичных состояний и вероятностей электромагнитных переходов в н.н. ядрах 158Но.
- 3. Показано, что изомерное состояние 35.3 кэВ с I^π=7/2⁻ в ядре 157 Tm, непосредственно β-распадом практически не заселяется, что возможно объясняется структурой изомерного уровня.
- 4. На основе проведенных исследований однозначно установлена структура головных не ротационных уровней в ядре 158Но.

СПАСИБО !!!