# COMPTON IONIZATION OF ATOMS NEAR THRESHOLD AS A METHOD OF SPECTROSCOPY OF OUTER SHELLS

# Yu.V. Popov<sup>1,2</sup>, I.P. Volobuev<sup>1</sup>, O. Chuluunbaatar<sup>3</sup>

<sup>1</sup>Nuclear Physics Institute, Lomonosov Moscow State University, Moscow, Russia, <sup>2</sup>BLTP, Joint Institute for Nuclear Research, Dubna, Russia, <sup>3</sup>LIT, Joint Institute for Nuclear Research, Dubna, Russia

October 12, 2020

< □ > < □ > < □ > < □ > < □ >

This report is based on the article published in Nature Physics:

M. Kircher, F. Trinter, S. Grundmann, I. Vela-Perez, S. Brennecke, N. Eicke, J. Rist, S. Eckart, S. Houamer, O. Chuluunbaatar, Yu.V. Popov, I.P. Volobuev, Kai Bagschick, M.N. Piancastelli, M. Lein, T. Jahnke, M.S.Schöffler, and R. Dörner.

# Kinematically complete experimental study of Compton scattering at helium atoms near the threshold

Nature Physics 16 (4) (2020), 756 -760

## General

In general, Compton scattering is a relativistic process. Its theory is well known for a long time and presented in many textbooks. However, if the initial photon energy  $\omega_1$  is of the order of a few keV, and the energy of the escaped electron is a few eV (near treshold), the non-relativistic approach is possible. The energy and momentum conservation laws are

$$\omega_1 = \omega_2 + I_p + E_p + E_{ion}, \tag{1.1}$$

$$\vec{k}_1 = \vec{k}_2 + \vec{p} + \vec{K},$$
 (1.2)

where  $I_p$  is the ionization potential,  $E_p(\vec{p})$  is the energy (momentum) of the escaped electron,  $E_{ion}(\vec{K})$  is the energy (momentum) of the residual ion,  $\omega_i(\vec{k}_i)$  is the energy (momentum) of the initial (final) photon. The momentum transfer is given by  $\vec{Q} = \vec{k}_1 - \vec{k}_2$ . We can also rewrite the energy conservation law in a convenient form

$$\omega_2 = \omega_1 \left( 1 - \frac{I_{\rho} + E_{\rho}}{\omega_1} \right) = \omega_1 t, \quad t \lesssim 1.$$

イロト 不得 トイヨト イヨト

In the non-relativistic energy range we can use the atomic units  $e = m_e = \hbar = 1$ . In these units,  $E_p = p^2/2$ ,  $k_i = \omega_i/c$ ,  $\omega(a.u.) = \omega(keV)/27.2(eV) \sim c (= 137)$ , so that  $k_i \sim 1$  in the chosen photon energy range. In these notations  $Q = k_1 \sqrt{1 - 2t \cos \theta + t^2}$ ,  $\theta$  denoting the angle between the photon momenta  $\vec{k}_1$  and  $\vec{k}_2$ .

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

#### **Motivation**

The main motivation of this investigation was to establish a new method of studying the momentum distribution of the active electron in an atomic target in analogy to the Electron Momentum Spectroscopy (e,2e).

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

## Experiment

Scheme of the experiment



A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

#### **Problems and challenges**

Compton scattering cross section is very low. ( $\approx 10^{-24}$  cm<sup>2</sup>, one million times smaller than typical photoionization cross sections!)

The typical solution: high target density (solids)

We do a **fully differential measurement**, i.e. all particle momenta have to be detected in coincidence. Therefor, we need a gas target, i.e. low target density

Our solution: high photon flux





### Synchrotron light



# Theory

#### **Relativistic approach**

The problems of relativistic approach within QED:





- The ion is treated not as a particle, but as the source of an external classical Coulomb field. In COLTRIMS the ion is treated as a particle that moves and acquires a momentum after the interaction.
- 2 It is extremely difficult to build a correlated wave function of the atomic initial state.
- It is very difficult to find Green's function of the intermediate virtual electron in the Coulomb field.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

#### Non-relativistic approach

We consider Compton scattering at helium atoms. The non-relativistic TDSE, which describes the atom-light interaction, reads:

$$\frac{\partial}{\partial t}\Psi(\vec{r}_1,\vec{r}_2,\vec{r}_p,t) = \left[\frac{1}{2}\left(-i\vec{\nabla}_1 - \frac{1}{c}\vec{A}(\vec{r}_1,t)\right)^2 + \frac{1}{2}\left(-i\vec{\nabla}_2 - \frac{1}{c}\vec{A}(\vec{r}_2,t)\right)^2 + \right]$$

$$\frac{1}{8M} \left( -i\vec{\nabla}_{\rho} + \frac{1}{c}\vec{A}(\vec{r}_{\rho},t) \right)^{2} - \frac{2}{|\vec{r}_{\rho} - \vec{r}_{1}|} - \frac{2}{|\vec{r}_{\rho} - \vec{r}_{2}|} + \frac{1}{|\vec{r}_{1} - \vec{r}_{2}|} \right] \Psi(\vec{r}_{1},\vec{r}_{2},\vec{r}_{\rho},t).$$
(1)

In Eq. (4) M = 1836 a.u. is the mass of the proton,  $\vec{r}_{\rho}$  is its coordinate and  $\vec{r}_{1,2}$  denote the coordinates of the electrons. The vector potential is defined as follows

$$\frac{1}{c}\vec{A}(\vec{r},t) = \sqrt{\frac{2\pi}{\omega_1}} \vec{e}_1 e^{i(\vec{k}_1\vec{r}-\omega_1t)} + \sqrt{\frac{2\pi}{\omega_2}} \vec{e}_2 e^{-i(\vec{k}_2\vec{r}-\omega_2t)}.$$
 (2)

Here  $\vec{e}_1$  and  $\vec{e}_2$  are linear polarizations of the initial and final photons. This choice of the vector potential corresponds to a single incident photon and a single outgoing photon. We remind that  $(\vec{k}_i \cdot \vec{e}_i) = 0$ , so that  $\operatorname{div} \vec{A}(\vec{r}, t) = 0$  (the Coulomb gauge).

イロト 不得 トイラト イラト 二日

The interaction term of an electron and the photon is written as

$$V_{int} = i \frac{1}{c} \left( \vec{A}(\vec{r},t) \cdot \vec{\nabla}_r \right) + \frac{1}{2c^2} A^2(\vec{r},t) = i \left( \sqrt{\frac{2\pi}{\omega_1}} e^{i(\vec{k}_1 \vec{r} - \omega_1 t)} (\vec{e}_1 \cdot \vec{\nabla}_r) + \sqrt{\frac{2\pi}{\omega_2}} e^{-i(\vec{k}_2 \vec{r} - \omega_2 t)} (\vec{e}_2 \cdot \vec{\nabla}_r) \right) + \left( \frac{\pi}{\omega_1} e^{2i(\vec{k}_1 \vec{r} - \omega_1 t)} + \frac{\pi}{\omega_2} e^{-2i(\vec{k}_2 \vec{r} - \omega_2 t)} + \frac{2\pi}{\sqrt{\omega_1 \omega_2}} (\vec{e}_1 \cdot \vec{e}_2) e^{i[(\vec{k}_1 - \vec{k}_2] \vec{r} - (\omega_1 - \omega_2) t]} \right).$$
(6)

The red term is the well-known Kramers - Heisenberg - Waller matrix element. It is also called  $A^2$  term, which is analogous to the FBA in agreement with the ionization reactions with electrons and bare ions. We focus our attention on considering this term.

< □ > < 同 > < 回 > < 回

In calculating the matrix element we omit the intermediate operations only enumerating them:

1. Because of the huge mass of the alpha-particle we dropped its interaction with the EM field from the total interaction term (6).

2. We integrate the FBA matrix element with respect to time and  $\vec{r_{p}}$ , which gives the delta-functions of energy and momentum conservation.

3. We also integrate with the help of these delta-functions.

The full differential cross section (FDCS) in the atomic units can be written as

$$\frac{d^{3}\sigma}{dE_{e}d\Omega_{e}d\Omega_{1}} = \frac{\alpha^{4}}{(2\pi)^{3}} \rho \left(1 - \frac{p^{2}/2 + l_{\rho}}{\omega_{1}}\right)^{2} \frac{1}{2} \sum_{e_{1},e_{2}} |M|^{2}.$$
 (7)

The sum in (7) implies the averaging over the initial (linear) photon polarizations and summing over the final (linear) photon polarizations.

$$\mathcal{M}(\vec{Q},\vec{p}) = (\vec{e}_1 \cdot \vec{e}_2) < \Phi_f^-(\vec{p}) | \sum_{j=1}^2 e^{j \vec{Q} \vec{r}_j} | \Phi_0 > .$$
 (8)

Here  $\vec{e}_i$  is the photon polarization vector. We have to remark that the initial  $|\Phi_0\rangle$  and final  $\langle \Phi_f^-(\vec{p})|$  states of the atom must be orthogonal  $\langle \Phi_f^-(\vec{p})|\Phi_0\rangle = 0$ , i.e.  $M(0, \vec{p}) = 0$ . Thus, if these functions do not belong to the same atomic Hamiltonian, they should be obligatory orthogonalized.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

In Eq. (8)  $\Phi_0(\vec{r}_1, \vec{r}_2)$  is the trial symmetric helium ground state WF, which may have various degrees of electron-electron correlations, and

$$\Phi_{f}^{-*}(\vec{p};\vec{r}_{1},\vec{r}_{2}) = \frac{1}{\sqrt{2}} [\varphi^{(*-)}(\vec{p},\vec{r}_{1};Z)\varphi_{0}^{He+}(r_{2}) + \varphi^{(*-)}(\vec{p},\vec{r}_{2};Z)\varphi_{0}^{He+}(r_{1})].$$
(9)  
$$P_{0}^{He+}(r) = \sqrt{\frac{8}{\pi}} e^{-2r}, \quad \varphi^{(*-)}(\vec{p},\vec{r};Z) = e^{-\pi\zeta/2} \Gamma(1+i\zeta) e^{-i\vec{p}\cdot\vec{r}} {}_{1}F_{1}[-i\zeta,1;i(pr+\vec{p}\cdot\vec{r})].$$
(5)  
$$F_{0}^{-}(\vec{p},\vec{r};Z) = Z(r) \leq 1.$$
(9)

The momentum transfer Q should be comparable with the electron momentum p.

p

## **Results**





・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Fully differential electron angular distributions. The photon scattering angle is  $130^{\circ} < \theta < 170^{\circ}$ . Displayed is  $\cos \chi$  between the outgoing electron and the momentum transfer *Q* for electron energies of a) all energies, b)  $1.0 < E_e < 3.5 \text{ eV}$ , and c)  $3.5 < E_e < 8.5 \text{ eV}$ .

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A



Popov (SINP MSU, JINR)

compton scattering

Electron energy distribution. The scattering angle between the incoming and outgoing photon for the outgoing photon is restricted to  $140^{\circ} < \theta < 180^{\circ}$  in all panels. **a**, The electron energy spectrum is shown independent of the electron emission direction. **b**, The electron emission angle is restricted to forward scattering ( $0 < \theta_e < 40^{\circ}$ ). **c**, The electron emission angle is restricted to backward scattering ( $140^{\circ} < \theta_e < 180^{\circ}$ ). The black dots are the experimental data. The error bars represent the standard statistical error. The solid lines are different theoretical results. The experimental data in a and b are normalized such that the maximum intensity is 1; the theory is normalized such that the integrals of the experimental data and the theoretical curves are equal. The normalization factors in c are identical to those in b, because here we depict the forward/backward direction of the same distribution.

< □ > < □ > < □ > < □ > < □ >



Figure 8: TCS eq. (11) versus the photon energy. Red dashed line: Hy, blue solid line: CF (practically coincides with SPM). Experimental points and other calcs are taken from J.Samson et al, PRL **72** (1994), 3329

• • • • • • • • • • • • •

# **Concluding remarks**

- Experimental and theoretical perspectives of Compton double ionization;
- Compton scattering on three-body nuclear target;
- ۲

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thank you for your attention!

Popov (SINP MSU, JINR)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●