ПРОИСХОЖДЕНИЕ СВИНЦА В СОСТАВЕ АНТИЧНОЙ КЕРАМИЧЕСКОЙ СКУЛЬПТУРЫ ИЗ КЕРЧЕНСКОЙ БУХТЫ

2020 г. П. К. Кашкаров^{1,2,3}, М. В. Ковальчук¹, Н. А. Макаров⁴, Е. Б. Яцишина¹, Э. А. Грешников¹, А. А. Анциферова^{1,2}, П. А. Волков¹, Л. И. Говор¹, С. В. Ольховский⁴, Н. Н. Преснякова¹, Р. Д. Светогоров¹

¹ Национальный исследовательский центр «Курчатовский институт», Москва, Россия ² Московский физико-технический институт, Долгопрудный, Россия ³ Московский государственный университет им. М.В. Ломоносова, Москва, Россия ⁴ Институт археологии РАН, Москва, Россия

Летом 2016 при строительстве опор Крымского моста экспедицией ИА РАН, под водой, был найден фрагмент античной крупной терракоты. Она была обнаружена среди перемещенных в 1970-е годы, при углублении дна, из района Керченской гавани, многочисленных керамических фрагментов.

Место находки античной терракоты

Для исследований античная терракота была передана в НИЦ Курчатовский институт. Поставлены задачи: 1) реконструировать первоначальный облик и технологию изготовления 2) датировать находку 3)установить центр производства и проследить торговые связи

В результате проведенного комплексного исследования было установлено Античная терракота:

1. Имела осмоленные волосы, бороду и усы.2. Также при окраске волос использовался железисто- марганцевый краситель темно-коричневого цвета 3. Губы были окрашены

красным охристым пигментом, нанесенным на загипсованную поверхность. 4. Краситель лица и глаз остался неизвестен из-за утрат во время пребывания в воде.

График радиоуглеродного анализа образца смолы с поверхности терракоты. Результаты AMS-датирования образца смолы терракотовой головы (Центр изотопных исследований Джорджии, США, Иллинойс)

ПРОГРАММА РАДИОУГЛЕРОДНОЙ КАЛИБРОВКИ: CALIB REV7.1.0 1986-2018 M Stuiver and PJ Reimer

1.Sample	Lab. No	Material	δ13C, %	Analysis
Ak-Burun	UGAMS 42221	Resin	-25,40	Radiocarbon
2.Conventional radiocarbon age BP	рМС	2-sigma calibrated result	1-sigma calibrated result	Median probability
2360+/-20	74,56	Cal 484–391 BC 95,4 %	cal 414–395 BC 68,3 %	-407 BC

Обнаружены металлические наплывы внутри терракоты

Элементный состав образца металла по данным ЭРМ.

Химические	Неочищенная	Срез пробы <i>,</i>		
ЭЛОМОЦТЫ	поверхность,			
элементы	весовые %	весовые %		
0	5.3	-		
Na	0.9	-		
AI	0.5	-		
Si	2.0	-		
Cl	11.5	-		
Са	0.9	-		
Fe	0.8	_		
Pb	78	100		

200 um

Срез

Неочищенная поверхность

Состав микроэлементов свинца изучали методом атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой (АЭС-ИСП) на приборе iCAP6300 duo, Thermo (для калибровки использовали многоэлементные стандарты фирмы High purity standards ICP-AM-6 и ICP-MS-68), а изотопный состав образца методом масс-спектрометрии с индуктивно-связанной плазмой (МС-ИСП) на приборе ELAN DRC-e (II) Perkin Elmer(для калибровки использовали стандарт изотопного состава свинца: NIST Standard Reference Material 981 с содержанием изотопов: ²⁰⁴Pb-1.4255 %; ²⁰⁵Pb-24.1442 %; ²⁰⁷Pb-22.0833 %; ²⁰⁸Pb-52.3470 %)

Элементный состав микропримесей образца свинца, определенный методами АЭС-ИСП и МС-ИСП. Для определения концентраций Li, B, Na, Si, K, Ca и Ti применялся метод АЭС-ИСП, для определения остальных элементов МС-ИСП (средняя погрешность определения содержания элементов в материале пробы составила 15%)

Химические элементы с концентрацией от 0,1 до 1000 мг/кг																
Na	Mg	AI	Si	к	Са	Ti	Mn	Fe	Со	Ni	Cu	Zn	As	Sr	Y	Rh
400	260	77	180	95	670	5	11	280	1,2	27	650	2,3	4,5	12	1,2	15
Химические элементы с концентрацией от 0,1 до 1000 мг/кг																
Ag	Sb	Ва	Bi	Мо	Ce	В	Li	Sc	Zr	Те	v	Cr	La	Nd	Se	Hg
13	67	6,4	0,6	0,8	0,8	1,0	0,2	0,2	0,2	0,2	0,3	0,4	0,4	0,4	0,5	0,5
Микроэлементы с концентрацией <0,1 мг/кг: Be, Ga, Ge, Rb, Nb, Ru, Pd, Cd, In, Sn, Cs, Pr, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Th, U																

Соотношения изотопов Pb – Pb образца (с учетом погрешностей). SD₁ – стандартное отклонение величины относительного содержания изотопа в образце (общее содержание изотопов свинца нормировано на 100%), SD₂ – стандартное отклонение величины изотопного соотношения Pb – Pb (рассчитано из SD₁ для отдельных изотопов); нижняя и верхняя границы – диапазон попадания истинного значения шириной 2SD₁, рассчитанный по 20' критерию, для отдельных изотопов. В этом случае истинные значения попадают в указанный интервал с вероятностью > 90%.

Изотопы Рb образца		SD ₁ , %	2SD₁ , %	нижняя	верхняя граница	
204	1,3432	0,0004	0,0009	1,3423	1,3441	
206	25,350	0,013	0,026	25,324	25,376	
207	21,092	0,025	0,050	21,042	21,142	
208	52,214	0,025	0,050	52,164	52,264	
Отношения изотопов Pb-Pb			200	нижняя	верхняя	
обр	образца		250 2, ед	граница	граница	
206/204	18,874	0,011	0,022	18,852	18,896	
207/204	15,703	0,019	0,038	15,665	15,741	
208/204	38,874	0,022	0,044	38,830	38,918	
204/206	0,052984	0,000032	0,000064	0,052920	0,053048	
207/206	0,83202	0,00110	0,00220	0,82982	0,83422	
208/206	2,0597	0,0015	0,0030	2,0567	2,0627	

Двумерные диаграммы изотопных полей рудных месторождений Средиземноморья. Изотопные соотношения *Pb-Pb* руд представлены в точечном виде. В нижней диаграмме используется метод «охватывающих эллипсов» (кластеров, объединяющих наиболее близкие руды).

Изотопные диаграммы отношений ²⁰⁸Pb/²⁰⁶Pb к ²⁰⁷Pb/²⁰⁶Pb u ²⁰⁷Pb/²⁰⁴Pb к ²⁰⁶Pb/²⁰⁴Pb образца и свинецсодержащих руд Эгеиды и Западного Средиземноморья эпохи железного века. «Охватывающие эллипсы» изотопных отношений ²⁰⁸Pb/²⁰⁶Pb к ²⁰⁷Pb/²⁰⁶Pb и ²⁰⁸Pb/²⁰⁶Pb к ²⁰⁴Pb/²⁰⁶Pb руд «Taurus 2B» (Центральная Турция), Лавриона (Греция) и изотопная метка образца.

Двумерные диаграммы изотопных отношений ²⁰⁸Pb/²⁰⁶Pb к ²⁰⁷Pb/²⁰⁶Pb и ²⁰⁶Pb/²⁰⁴Pb к ²⁰⁷Pb/²⁰⁶Pb образца и руд из шахт Лавриона, п-ва Халкидика, островов Сифноса и Фасоса, а также афинских и фасосских серебрянных монет и фрагментов продукта купеляции – литаргита V в. до н.э.

Изотопные соотношения Pb-Pb образца свинца и галенитовых и полиметаллических руд Аттики, располагающиеся в пределах стандартного отклонения измерений образца (2SD).

	Соотношения свинцовых изотопов								
Образец, место находки, тип руды	Pb207/206	Pb 206/204	Pb 207/204	Pb 208/204	Pb208/206				
Фрагмент свинцового наплыва терракоты	0,83202	18,874	15,703	38,874	2,0597				
Лаврион, Аттика (материковая Греция)									
К19, Лаврион, шахта Камареса, малахит, азурит	0,83196	18,868	15,697	38,848	2,05891				
L4, Лаврион, шахта Камареса, кабрерит	0,83134	18,875	15,692	38,886	2,06020				
ТG60А-1, Лаврион, шахта Камареса, галенит	0,83127	18,865	15,682	38,837	2,05867				
ТG60А-2, Лаврион, шахта Камареса, церуссит	0,83104	18,895	15,703	38,899	2,05871				
В5, Лаврион, шахта Плака, галенит	0,83127	18,882	15,696	38,888	2,05951				
60-I-2, Лаврион, шахта Торикос, галенит	0,8314	18,86	15,68	38,85	2,060				
60-I-3, Лаврион, шахта Торикос, галенит	0,8314	18,86	15,68	38,85	2,060				

Возможный источник руды – Аттика (Греция), месторождение Лаврион

При подготовке материалов презентации использованы данные публикаций:

Gomes Susana Alves de Sousa e Silva Análise Isotópica do Pb em Metais Arqueológicos por ICP-QMS // Mestrado em Química Dissertação Mestrado em Química Tecnológica Ramo de Química Tecnológica. Universidade de Lisboa faculdade de ciencias departamento de chimica e bioquimica, 2012, 133 p.

Bartelheim M., Horejs B., Krauß R. Von Baden bis Troia; Ressourcennutzung, Metallurgie und Wissenstransfer; eine Jubiläumsschrift für Ernst Pernicka // hrsg. von Martin Bartelheim, Rahden // Westf alen: Leidorf, Oriental and European Archaeology, 2016, Bd. 3, 536 P

Yener K.A., Sayre E.V., Joel E.C., et al. Stable Lead Isotope Studies of Central Taurus Ore Sources and Related Artifacts from Eastern Mediterranean Chalcolithic and Bronze Age Sites // Journal of' Archaeological Science, 1991, Vol. 18, 5, P. 541.

Gale N.H., Gentner W., Wagner G.A. Mineralogical and Geographical Silver Sources of Archaic Greek Coinage. In D.M. Metcalf, (ed.) // Roy. Num. Soc. Special Publication 1980. No.13, Metallurgy in Numismatics I, London, 3-50.

Gale, N.H., Picard, O., Barrandon N. The archaic Thasian silver coinage // In Wagner G.A. and Weisgerber G. eds. Antike Edel- und Buntmetallgewinnung auf Thasos. Der Anschnitt Beiheft 6, Deutschen Bergbau-Museums, Bochum, 1988, P.212-223

А также материалы электронных баз данных OXALID, Brettscaife. Net

Исследования продолжаются.

Намечено изучение происхождения глиняного сырья.

Благодарим за внимание