

X-RAY, SYNCHROTRON AND NEUTRON IMAGING OF METAL ARTIFACTS FROM THE CHERNAYA MOGILA BURIAL MOUND (X century, Chernigov)

E.Yu. Tereschenko^{1,2},

E.S. Kovalenko¹, V.P. Glazkov¹, M.M. Murashev¹, K.M. Podurets¹, S.I. Kartashov¹, I.A. Chichaev¹, S.Yu. Kainov³, V.V. Murasheva³, E.B. Yatsishina¹

National Research Center "Kurchatov Institute", Moscow
 Shubnikov Institute of Crystallography, Federal Scientific Research Center "Crystallography and Photonics" Russian academy of sciences, Moscow

³ State Historical Museum, Moscow

Experimental methods and Facilities

Synchrotron imaging

The Kurchatov synchrotron radiation source the Tomography facility at the beamline 6.3

Neutron imaging

The IR-8 research reactor the DRAKON facility

X-ray imaging – Computer tomography

PET-CT tomograph Biograph mCT40 (Siemens)

Spatial resolution (slice thickness) – 0.6 mmSpatial resolution in the tomography plane during reconstruction – $0.88 \times 0.88 \text{ mm}$. 140 kV/80 mA; 140 kV/150 mA; 140 kV/50 mA; 120 kV/20 mA.

The Chernaya mogila burial mound X century, Chernigov (present-day Ukraine)

Chernaya mogila burial mound before the start of excavations in 1872. From [Samokvasov D.Ya. Mogilnye drevnosty Severyanskoy Chernigovshchiny. Moskva: Synodalnaya typografia. 1916 (in Russian)].

Current view (Yandex.maps)

Artifacts from the Chernaya mogila burial mound X century, Chernigov

Helmet (decoration details)

Figured edges of the helmet plates.

Photo

Drawing of the ornament on the lower part of helmet's finial – SR data.

Reconstruction of the structural elements of the helmet's finial:

Orange – plate "plug",

Purple - ring "plug",

Green - cylindrical part,

Blue – the lower conical part,

Red – the strengthening insert,

Black - locking ring.

Scalloped-edged objects «Barbarian scepters»

(1)

2

Scalloped-edged object

ornament at the front side

possible ornamental elements at the backside

Ornamental elements:

lines, thickness 400-600 µm

«dots» diameter and depth 500-700 μm

Scalloped-edged objects

Radiogram of the object 1 on SR (a), ornament selection on the radiogram (b), preserved "dots" on the object 1 (c), radiogram of the object 2 on SR (d), ornament selection on the radiogram (e), reconstruction of the ornament (f).

Scalloped-edged object ③

Scalloped-edged objects «Barbarian Scepters»

Proposed reconstruction

Arrowhead

Photo of the arrowhead

SR tomography

Ornament on both sides of the arrowhead

Drops of a metal incrustation

Arrowhead

neutrons (N) and synchrotron radiation (SR).

Neutron diffraction, IR-8, DISK, $\lambda = 1.67 \text{ Å}$

Arrowhead (3D reconstruction)

vegetative ornament

ArrowheadReconstruction of the floral ornament

decoration.

Spearhead tip

Spearhead tip

type I by J.
Petersen
classification

pinholes (white arrows) preserved pin (red arrow)

The spearhead tip Reconstruction of the geometrical ornament

0 1 2 3 **cm**

Photo of the fragment **C** of the spearhead tip

SR radiograms of the fragment

C

3D reconstruction

Fragment of the Sword (mark)

Fragment of the Sword (mark)

Weapons sintered conglomerate

Weapons sintered conglomerate (part 1) 3D reconstruction

1 - spearhead, 2 - a part of spearhead, 3 - sword blade fragment (sword 1), 4 - bracket fragment, 5 - sword blade fragment, 6 - stirrup, 7 - chain armor fragment. The purpose of 8 item is not established.

Weapons sintered conglomerate (part 2) 3D reconstruction

CT

10 - fragment of a spearhead, 11 - stirrup, 13 and 14 - fragments of sword blades (swords 2 and 1 respectively), 15 - fragment of a sabre blade. The purpose of items 9, 12, 16 is not established.

Conclusions

In order to analyze on the artifacts internal structure, assess their preservation, clarify the manufacturing technology and localize possible decorations, a complex of visualization methods was used. It includes: X-ray computer tomography, synchrotron radiography and tomography performed on the Kurchatov synchrotron radiation source, and neutron tomography carried out at the neutron source research reactor IR-8.

The data obtained made it possible to reveal the design, ornamental and technological features of the studied weapon items, which were inaccessible for other studies due to their poor preservation.

