

# СИНХРОТРОННО-НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ — БАЗА НОВОГО НАУЧНО-ТЕХНОЛОГИЧЕСКОГО ПРОРЫВА





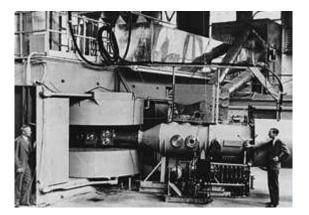


#### АТОМНЫЙ ПРОЕКТ
















#### РАЗВИТИЕ МЕГАНАУКИ В НИЦ «КУРЧАТОВСКИЙ ИНСТИТУТ»



Циклотрон (1944)



Ядерный реактор Ф-1 (1946)



Реактор атомного ледокола Ленин (1957)



Токамак Т-4 (1971)



Курчатовский источник синхротронного излучения (1999)



Токамак Т-15МД (2019)



#### МЕГАУСТАНОВКИ В НИЦ КИ

- Курчатовский источник СИ
- Высокопоточный реактор ПИК
- Протонный синхротрон У-70
- Исследовательский реактор ИР-8
- Токамак Т-15МД
- Исследовательский реактор ВВР-М
- Протонный синхроциклотрон СЦ-1000
- Циклотрон Ц-80
- Курчатовский центр обработки данных
- Виварий SPF
- Коллекция микроорганизмов (ВКПМ)















**ЦОД** У-70

Реактор ИР-8

Токамак Т-15МД



#### КЛЮЧЕВЫЕ СОБЫТИЯ





#### **УКАЗ**

президента РОССИЙСКОЙ ФЕДЕРАЦИИ

О мерах по развитию свихретренных и вейтронных веспилований и иселеновательной инфрактруктуры в Российский Федерации

В велях комплексного ременяя педач ускоренного развития спортронных и неберовных исследованей, необходиных для создавия тероризмия технологий, и тиске обеспечения специота и ролятия последовательской инфраструктуры в Российской Фенерации поставия в и в вес

L. Opanisers error Potentional Congruent

2017

Ввод в

XFEL

эксплуатацию

а) в 3-мисячный срек разработать в утверсить Федеральную научно-режинаемую программу ранкитая синхроприянил и наблючика поставлений и полидовотильной инфрактруктуры на 2019 - 2027 годы (писее - Простамма):

2018

Энергетический

пуск ПИК

2019 Указ о

развитии синхротронных и нейтронных исследований

2013 в ESRF

Вступление

2009 Завершение модернизации «КИСИ-Курчатов»

2009

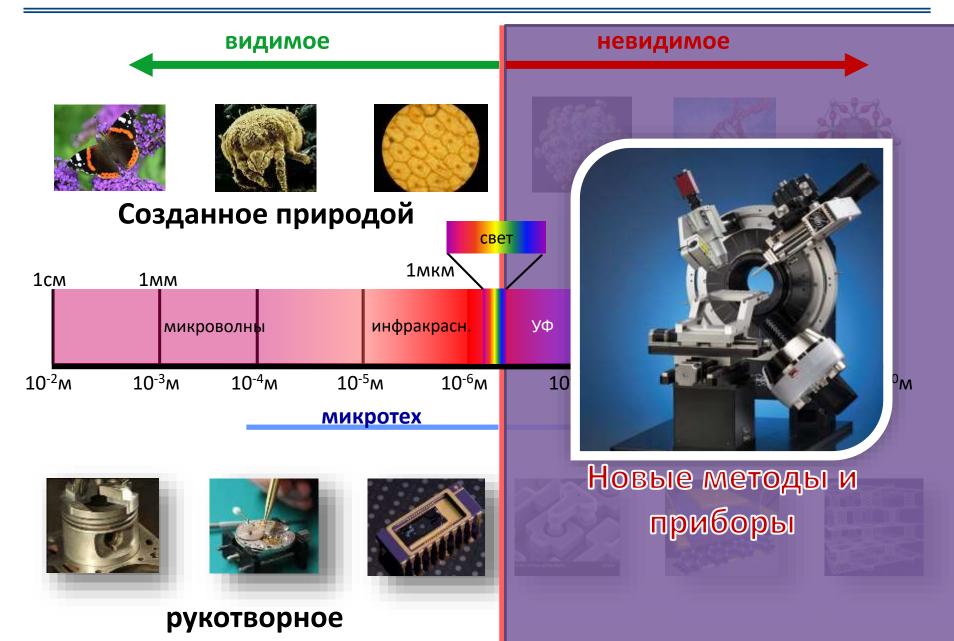
Запуск проекта **XFEL** 



2011

Решение о создании источника 4-го поколения



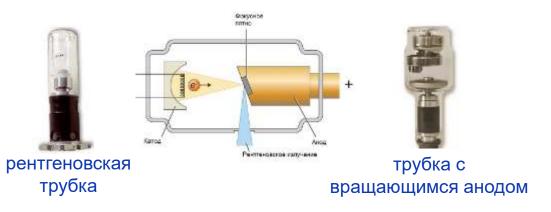

1999 Запуск

«КИСИ-Курчатов»



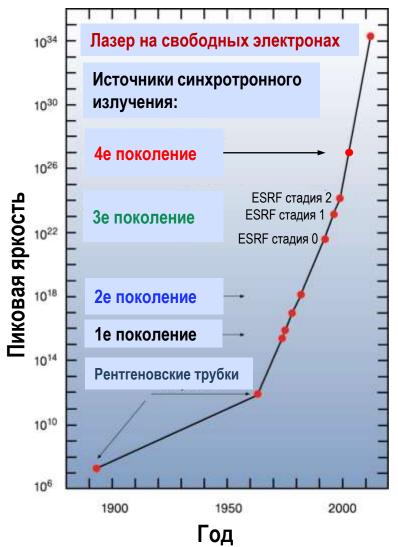






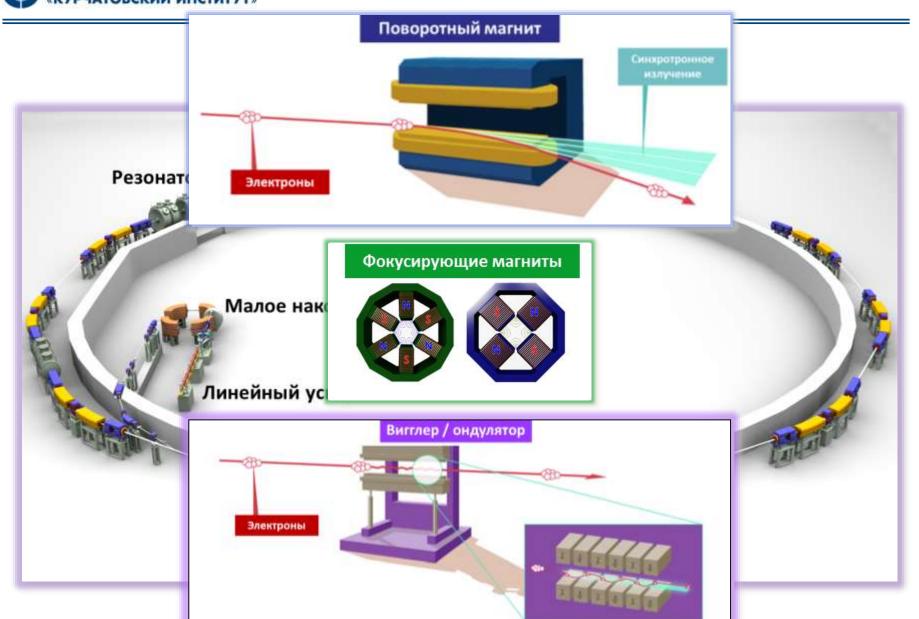



#### РЕНТГЕНОВСКИЕ ИСТОЧНИКИ: ИСТОРИЯ РАЗВИТИЯ


#### 120 ЛЕТ ПРОШЛО СО ДНЯ ОТКРЫТИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ,

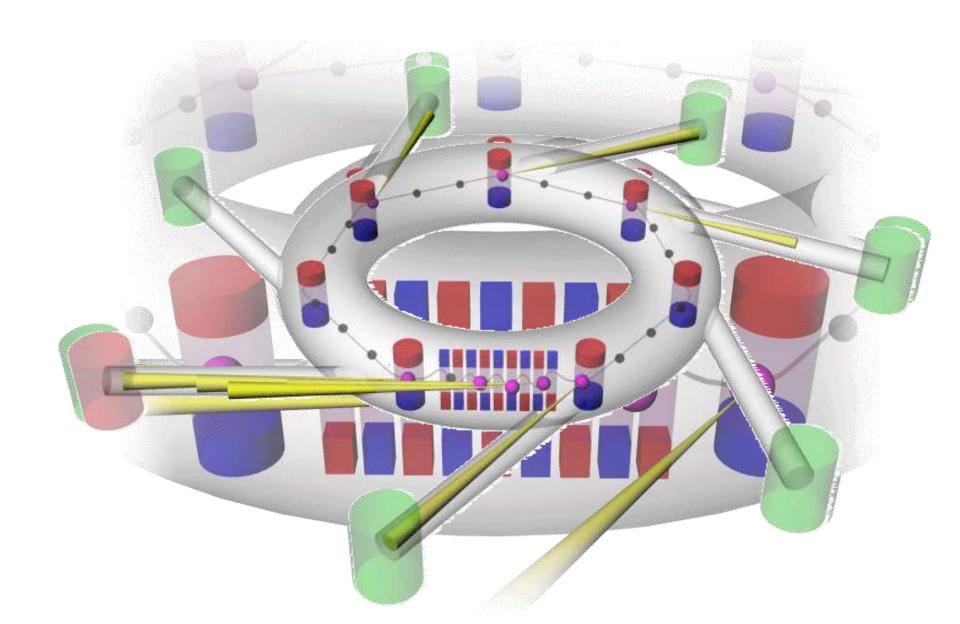
А ИНТЕНСИВНОСТЬ ЛАБОРАТОРНЫХ ИСТОЧНИКОВ НЕИЗМЕННА




#### Синхротронное излучение

- 1 Высокая яркость >10<sup>10</sup>
- **2** Широкий спектр (от инфракрасного до гамма)
- 3 Поляризация (в плоскости орбиты)
- 4 Временная структура (~пс)
- **5** Естественная коллимация (0.1 мрад)






#### **KAK YCTPOEH CUHXPOTPOH?**





#### КАК РАБОТАЕТ СИНХРОТРОН?





#### КУРЧАТОВСКИЙ СИНХРОТРОН 1985-2007





Строительство фундамента Курчатовского синхротрона (декабрь 1985, СССР) Первое здание Курчатовского синхротрона (1999-2007)



#### РЕКОНСТРУКЦИЯ СИНХРОТРОННОГО КОМПЛЕКСА (2007-2009)

## ЗАДАЧИ:

- Модернизация источника
- Расширение парка экспериментальных станций











## ПРЕДПОСЫЛКИ:

Создание комплекса НБИКСтехнологий поставило новые задачи перед синхротронно - нейтронным комплексом НИЦ КИ

#### РЕЗУЛЬТАТЫ:

Реконструкция здания КЦСИ создала условия для оснащения источника современными экспериментальными станциями с широким спектром уникальных методов исследования



#### КУРЧАТОВСКИЙ НБИКС ЦЕНТР





- Источник синхротронного излучения
- Исследовательский реактор ИР-8



• Суперкомпьютер и дата центр

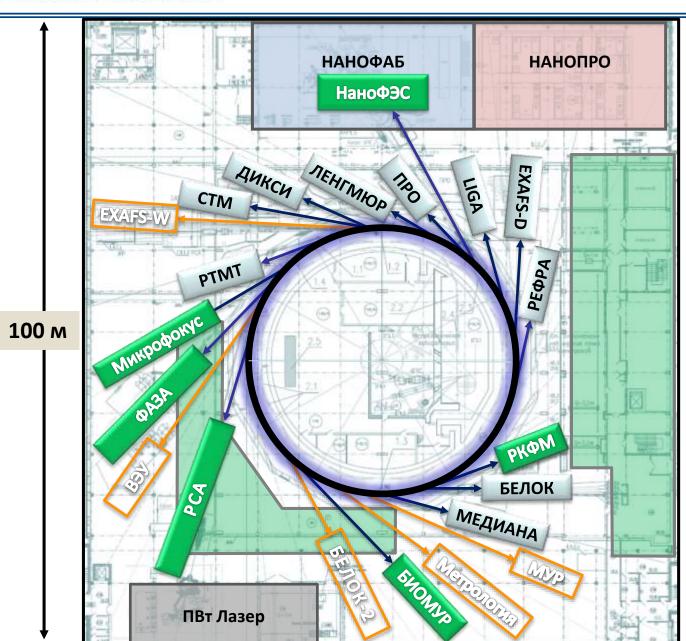


- Лаборатории нано-био исследований
- Генетический центр
- Белковая фабрика, искусственная клетка
- Полимерных биоматериалов, биотопливо
- Виварий, коллекция микроорганизмов
- Технологические лаборатории
- Ресурсные центры
- Отделение нанотехнологий (микро наноэлекторника)
- Аналитические лаборатории



- Лаборатории когнитивных исследовании
- Социогуманитарных исследований




# **КУРЧАТОВСКИЙ ИСТОЧНИК СИНХРОТРОННОГО ИЗУЧЕНИЯ**

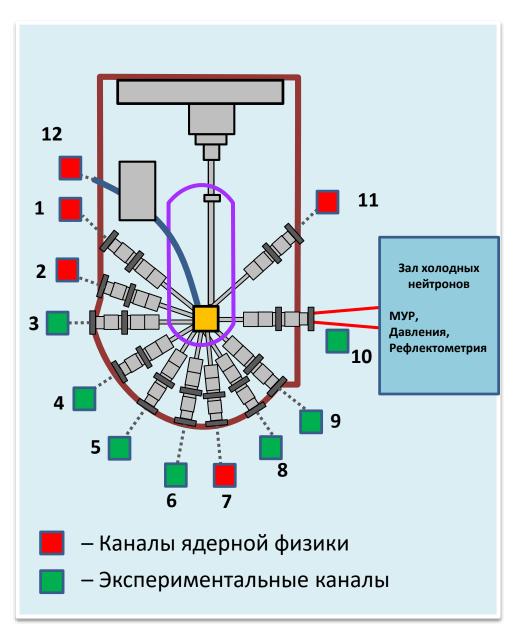


Размер занимаемых площадей: 17 тыс. м<sup>2</sup>



#### СХЕМА ЭКСПЕРИМЕНТАЛЬНОГО ЗАЛА




Действующие (16)

Новые 2015-18г (5)

Строящиеся (5)



## ИССЛЕДОВАТЕЛЬСКИЙ РЕАКТОР ИР-8 НЕЙТРОННЫЕ СТАНЦИИ



ГЭК 1 – Ультра-холодные нейтроны

ГЭК 2 – Ядерная спектроскопия

ГЭК 3 – Стресс анализ

ГЭК 4 – Монокристальный анализ

ГЭК 5 — Неупругое рассеяние

ГЭК 6 – Высокие давления

ГЭК 8 – п, Ү – радиография

ГЭК 9 – Малоугловое рассеяние

ГЭК 10 – Источник зала холодных нейтронов



# **КУРЧАТОВСКИЙ СИНХРОТРОН**И ИССЛЕДОВАТЕЛЬСКИЙ РЕАКТОР ИР-8

Курчатовский комплекс синхротронно-нейтронных исследований — одно из немногих мест в мире, где исследовательский реактор и синхротрон находятся на единой площадке







Уникальное сочетание их экспериментальных возможностей позволяет добиться принципиально нового качества фундаментальных и прикладных исследований



## ЭКСПЕРИМЕНТАЛЬНАЯ СТАНЦИЯ

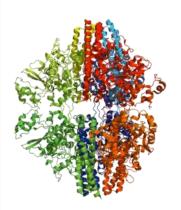




#### НАПРАВЛЕНИЯ ИССЛЕДОВАНИЙ

#### Кристаллография, материаловедение, структурная химия

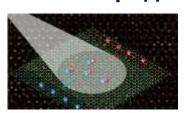


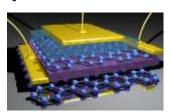




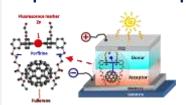


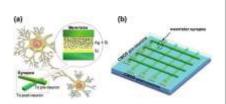

Новые материалы


#### Белковая кристаллография, молекулярная биология, медицина







#### Микро и наноэлектроника, гибридные материалы

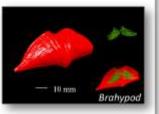




#### Органические и гибридные многослойные системы

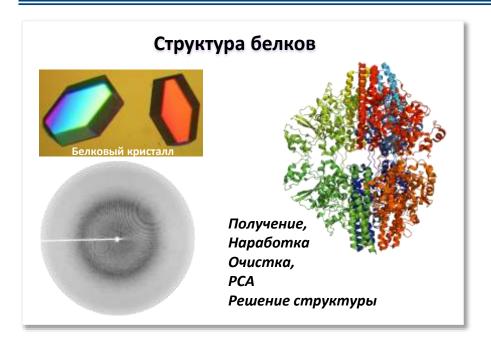





#### Культурное наследие















#### БЕЛКОВАЯ КРИСТАЛЛОГРАФИЯ, МОЛЕКУЛЯРНАЯ БИОЛОГИЯ, МЕДИЦИНА

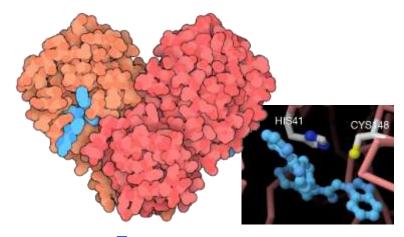










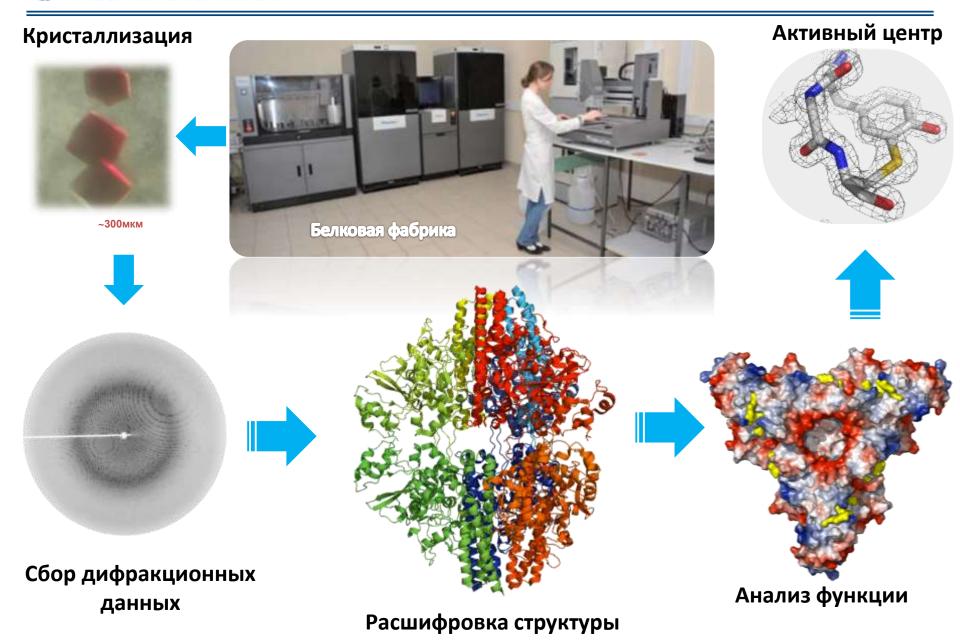

#### СТРУКТУРА БЕЛКОВЫХ МАКРОМОЛЕКУЛ

#### Функции белков обусловлена их трехмерной структурой



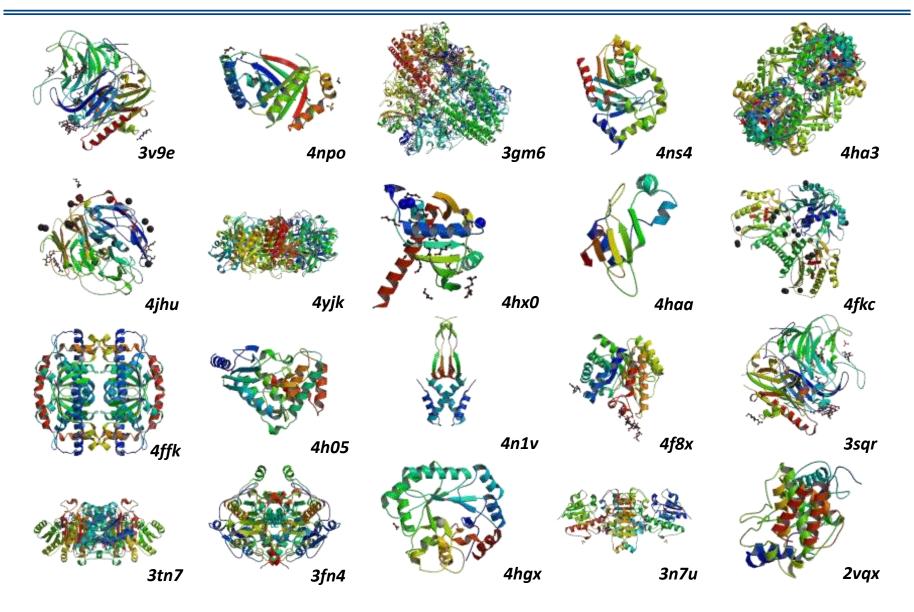
- Бактериальная 70S рибосома Разрешение – 3.1 Å
- Разработка лекарств, средств защиты растений
- Изучение механизмов
   функционирования клетки, управление
   этими механизмами
- Биотехнологии, методы терапии
- Создание сенсоров

Сегодня известна структура около 3% всех белков




Протеаза коронавируса SARS-CoV-2 (2019-nCoV) ингибитор — бирюзовый (PDB entry <u>6lu7</u>)

Cui, J., Li, F., Shi, Z.L. (2019) Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181-192.




## ПРИМЕРЫ ИССЛЕДОВАНИЙ - БЕЛКИ

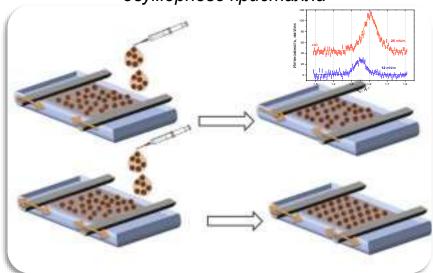




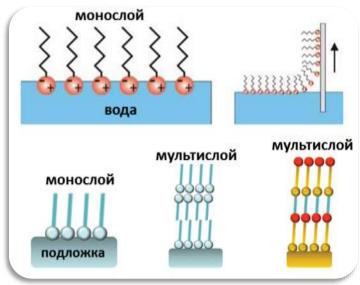
#### БЕЛКОВЫЕ СТРУКТУРЫ PDB



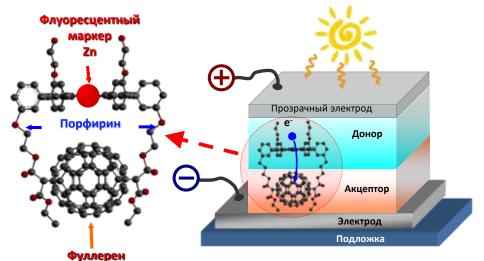


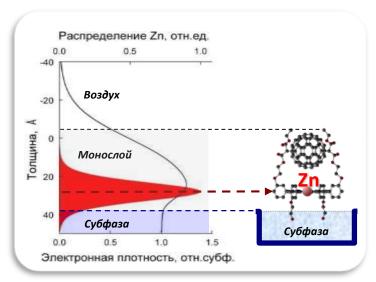

#### СИНХРОТРОННАЯ СТАНЦИЯ ЛЕНГМЮР






#### ИССЛЕДОВАНИЯ НА СТАНЦИИ ЛЕНГМЮР


Структурная организация — образование двумерного кристалла




Перенос на твердую подложку Создание многослойной структуры



Определение ориентации фуллерен-порфириновой диады на поверхности субфазы



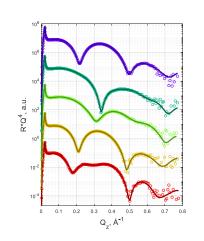


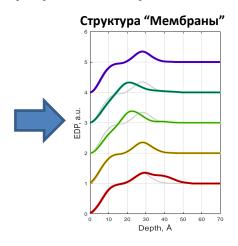


# ИССЛЕДОВАНИЯ МЕХАНИЗМОВ ДЕЙСТВИЯ ПРОТИВООПУХОЛЕВЫХ ПРЕПАРАТОВ



# Доксорубицин –


противоопухолевый препарат



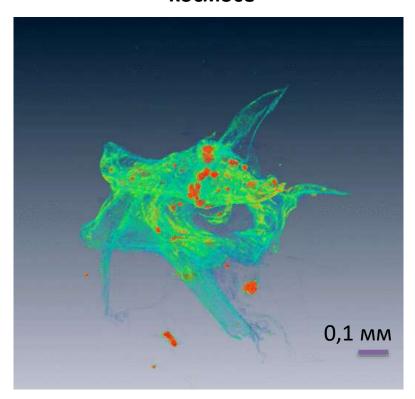

Клеточная мембрана



#### Рентгеновская рефлектометрия

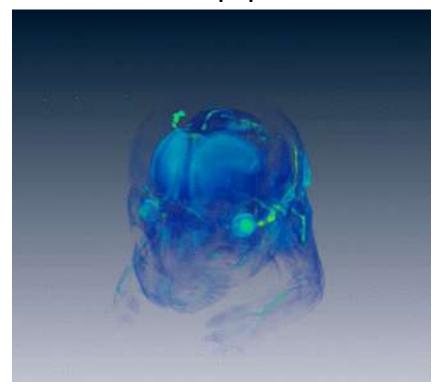







Получены новые данные о молекулярных механизмах поражения клеток под действием Доксорубицина




#### ВИЗУАЛИЗАЦИЯ БИО-ОБЪЕКТОВ

#### Изучение декальцинации костей в условиях длительного пребывания в космосе



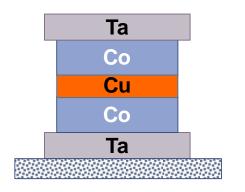
Позвонок геккона после космического полета

#### Изучение когнитивных процессов с применением рентгеновской томографии



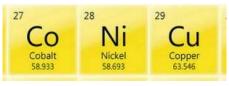
Визуализация активных центров в мозгу новорожденной мыши




#### НАНОЭЛЕКТРОНИКА, ГИБРИДНЫЕ МАТЕРИАЛЫ






#### ИССЛЕДОВАНИЯ СТРУКТУРЫ Co/Cu/Co **МЕТОДОМ СРВ**

#### Магнитная структура на эффекте гигантского магнитосопротивления

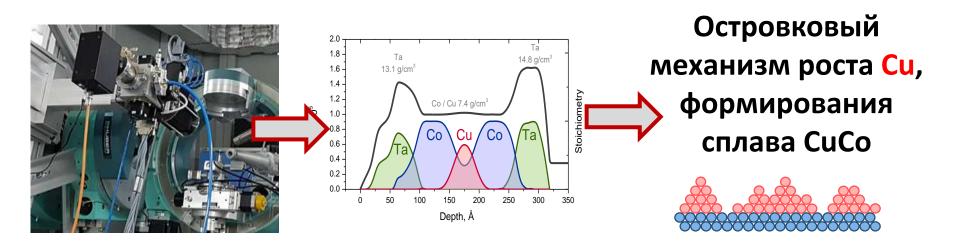


#### Задача исследований:

Как себя ведет немагнитная прослойка Си? Как разделены слои Со?






Стандартные методы (рефлектометрия) не чувствительны к

структуре слоев Со и Си!

8.9 g/cm<sup>3</sup>

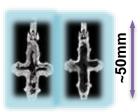
8.92 g/cm<sup>3</sup>

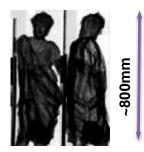
## Использование метода стоячих рентгеновских волн (СРВ)





## КУЛЬТУРНОЕ НАСЛЕДИЕ

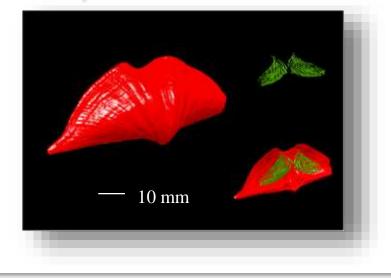

#### Папирусы, пергаменты




Изделия из металлов














Археологические объекты





#### РЕНТГЕНОВСКАЯ И НЕЙТРОННАЯ ТОМОГРАФИЯ КРЕСТОВ ЭНКОЛПИОНОВ

## Синхротронное излучение



Фотография креста энколпиона ~12 век

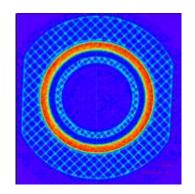


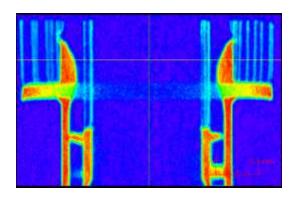




Нейтронная томография

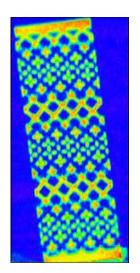


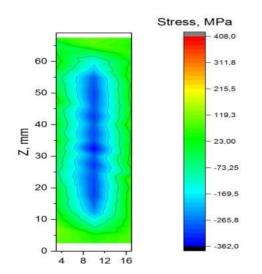


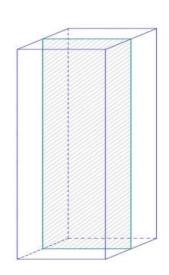




#### **ИЗДЕЛИЯ ВЫСОКИХ ТЕХНОЛОГИЙ**

#### Нейтронная томография завихрителя, полученного методом лазерного спекания




# Томографические срезы и распределение напряжений сетчатой структуры образца без термообработки











#### ОТ КРИСТАЛЛОГРАФИИ К ПРИРОДОПОДОБНЫМ ТЕХНОЛОГИЯМ





#### СТАТИСТИКА РАБОТЫ КУРЧАТОВСКОГО ИСТОЧНИКА СИ

- > 300 выполненных заявок
- 50 организаций
- 20 городов
- >120 пользовательских групп
- >3500 часов работы на эксперимент
- >25000 часов общее время работы станций

>240 статей WoS









# ПРОГРАММА РАЗВИТИЯ СИНХРОТРОННО-НЕЙТРОННЫХ ИССЛЕДОВАНИЙ И ИССЛЕДОВАТЕЛЬСКОЙ ИНФРАСТРУКТУРЫ





## МЕГАУСТАНОВКИ – ВАЖНЕЙШАЯ СОСТАВЛЯЮЩАЯ СОВРЕМЕННОЙ НАУКИ

- Участие РФ на ключевых ролях в проектах: XFEL, ESRF (материальное и интеллектуальное участие)
- Международные МЕГА-сайенс проекты на территории РФ: ПИК, СИЛА (Синхротрон-лазер)











## СИНХРОТРОННО-НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ В РОССИИ

#### Создание сети источников СИ объявлено национальным приоритетом



Визит Президента Российской Федерации в НИЦ «Курчатовский институт»



#### **УКАЗ**

ПРЕЗИДЕНТА РОССИЙСКОЙ ФЕДЕРАЦИИ

О мерах по развитию синхротронных и нейтронных исследований и исследовательской инфраструктуры в Российской Федерации

В целях комплексного решения задач ускоренного развития синхротронных и нейтронных исследований, необходимых для создания прорывных технологий, а также обеспечения создания и развития исследовательской инфраструктуры в Российской Федерации и о с т а и о в л я ю:

1. Правительству Российской Федерации:

а) в 3-месячный срок разработать и утвердить Федеральную научно-техническую программу развития синхротронных и нейтронных исследований и исследовательской инфраструктуры на 2019 - 2027 годы (далее - Программа);

б) обеспечить при разработке и реализации Программы:

определение основных направлений исследований, касающихся решения принципнально новых фундаментальных и крупных прикладных задач в целях реализации приоритетных направлений научно-технологического развития и достижения национальных целей развития Российской Федерации;

взянио зействие и кооплинацию деятельности Министоров

Указ о мерах по развитию синхротронных и нейтронных исследований 25/07/2019

Указом поручено разработать **программу развития синхротронно-нейтронных исследований и исследовательской инфраструктуры**, включая создание и модернизацию источников СИ: в Протвино, Москве, в Новосибирске и на Дальнем Востоке

#### ЗАДАЧИ ПРОГРАММЫ

#### 1.Создание и развитие исследовательско – технологической инфраструктуры





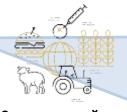








2. Подготовка специалистов для создания источников синхротронного излучения и нейтронов, а также научных сотрудников для проведения исследований






3. Создание условий для проведения синхротронных и нейтронных исследований, направленных на решение принципиально новых фундаментальных и крупных прикладных задач















Материаловедение

Медицина

Сельское хозяйство

Энергетика

Безопасность

Территория

Природоподобие



#### ИНФРАСТРУКТУРА СИНХРОТРОННЫХ ИССЛЕДОВАНИЙ В МИРЕ



КИСИ-Курчатов 2,5 ГэВ





ПИК

#### **ПРОРЫВ**

## ФЛАГМАНСКИЕ СИНХРОТРОНЫ 6 - 8 ГэВ (~1000 м)

APS - США

Spring-8 - Япония

Petra III - Германия

ESRF-EBS - Франция

**ИССИ - 4, РОССИЯ** прорывные результаты

#### БАЗОВЫЕ СИНХРОТРОНЫ

«Рабочие лошадки» - 1,5-3 ГэВ (>70 шт)



Зеленоград 2,5 ГэВ





# СЕТЕВАЯ ИНФРАСТРУКТУРА СИНХРОТРОННЫХ И НЕЙТРОННЫХ ИССЛЕДОВАНИЙ

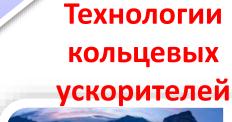




# **КУРЧАТОВСКИЙ ИНСТИТУТ - ГОЛОВНАЯ ОРГАНИЗАЦИЯ**

НИЦ «Курчатовский институт»




Технологии линейных ускорителей



**European XFEL** 



Синхротрон-лазер





**ESRF** 



#### МОДЕРНИЗАЦИЯ КУРЧАТОВСКОГО ИСТОЧНИКА СИНХРОТРОННОГО ИЗЛУЧЕНИЯ

- Накопительное кольцо
  - ✓ Магнитная система
  - ✓ Вакуумная система
  - ✓ Высокочастотная система
  - ✓ Система охлаждения
  - √ Вставные устройства
- Бустерный ускоритель (top-up)
- Линейный ускоритель
- Вставные устройства



Линейный ускоритель 160 MeV

Бустерный синхротрон:

E=160-2500 MeV

Накопительное кольцо:

2500 MeV

Emittance = ~ 10 nm-rad









## ИССЛЕДОВАТЕЛЬСКИЙ РЕАКТОР ПИК



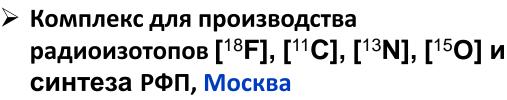
- Один из самых мощных в мире высокопоточных источников нейтронов
- По своим параметрам должен стать одним из лучших пучковых исследовательских реакторов в мире

#### Нейтроноводный зал

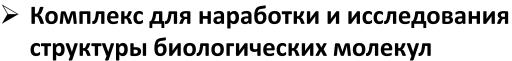


| Параметр                      | Значение           |
|-------------------------------|--------------------|
| Максимальная тепловая         | 100 MBT            |
| мощность                      |                    |
| Объем активной зоны, I        | 50                 |
| Максимальная плотность потока | 5x10 <sup>15</sup> |
| нейтронов, n/cm²c             |                    |
| Экспериментальные станции     | 25                 |
| Станции ФКС                   | 13                 |
| Фундаментальные исследования  | 7                  |
| Ультра- холодные нейтроны     | 1                  |
| Холодные нейтроны             | 1                  |
| Исследования нейтрино         | 1                  |
| Ядерная спектроскопия         | 3                  |

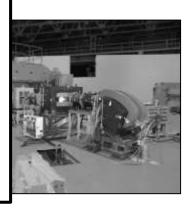


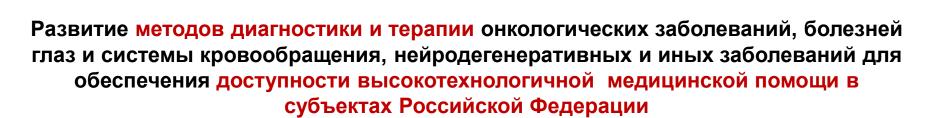



#### Создание на базе НИЦ «Курчатовский институт» научнообразовательного лечебного центра ядерной медицины




#### Инфраструктура


- Циклотрон Ц-80, Гатчина
- Ускоритель У-70, Протвино
- Ректор ИР-8, Москва
















#### КОНЦЕПЦИЯ СИЛА

- Синхротрон + рентгеновский лазер
- Дифракционно-ограниченный источник
- Полная пространственная и высокая временная когерентность  $(10^{-5} - 10^{-7})$
- Яркость до 10<sup>19</sup> фотонов/сек (синхротрон)
- Фемтосекундное разрешение (лазер)
- Яркость 10<sup>22</sup> фотонов/сек (лазер)

Накопительное кольцо – 6 ГэВ

Периметр кольца – 1,3 км

Эмиттанс – 90 пм\*рад

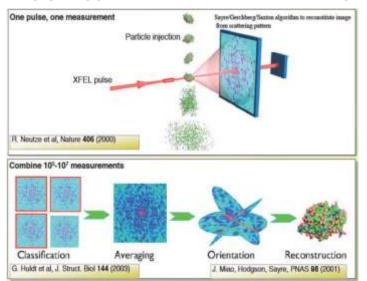
Количество станций > 40

Лазер на свободных электронах – 0,1 нм

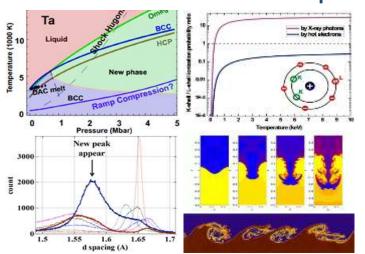
#### 1 этап (4-5 лет):

- Линейный ускоритель
- Кольцевой ускоритель
- 10 экспериментальных станций

#### 2 этап (4-6 лет)


- Лазер на свободных электронах
- 25 экспериментальных станций СИ

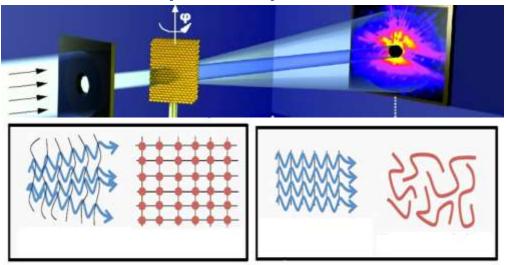


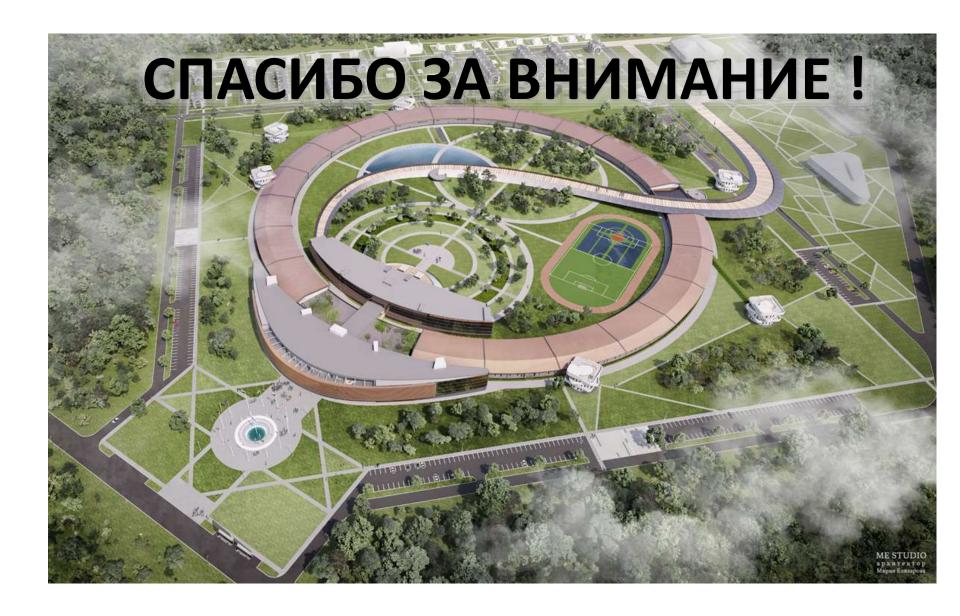



#### РАЗВИТИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ВОЗМОЖНОСТЕЙ

#### Структура одиночных молекул




#### Экзотическое состояние вещества




#### Кино химических реакций



#### Когерентное рассеяние



