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 Abstract 
Experiments at the Large Hadron Collider require data intensive processing and traditionally did 
not use HPCs till Run2. Before 2016 the ATLAS experiment at the LHC was using less than 10 
million hours of walltime at HPCs, while over an exabyte of data was processed annually on the 
grid. A large increase in data volume and data complexity at the LHC in 2016 created a 
shortage of computing cycles, and HPC systems stepped in to help the LHC achieve its physics 
goals. ATLAS was able to utilize about half a billion hours of walltime usage on HPCs during 
2017/2018. This is a huge increase in usage over a few years - required  numerous innovations 
and improvements. This paper  describes the use of HPCs worldwide by ATLAS, primarily for 
simulations, and specifically focus on how the HPCs are integrated with the workflow 
management and data management systems, and our vision for future  HPC evolution and new 
architectures and HPCs role for HEP. 



 

1. Introduction 
ATLAS [1] has successfully integrated HPC facilities with distributed computing and used HPCs             
for more than 5 years [2]. HPC facilities are integrated via different technologies because of the                
unique nature of HPCs, such as access to external network and WLCG storage endpoints [see               
Appendix A for a complete list of facilities]. Several approaches have been developed and              
commissioned to address differences in the access, authorization and service requirements of            
the various HPC centers. The flexibility of ATLAS processing, workload management system            
and data management system has enabled ATLAS to run most of the workflows on HPC.               
ATLAS uses the HPCs in the following ways: 

- grid-like execution when an HPC provides the external connectivity on the nodes and             
enables access to cvmfs software area either by directly mounting cvmfs on the nodes or               
using parrot with access to squid service. Any ATLAS workflow can execute on such              
HPCs. Typically ATLAS agents (ARC-CE or Harvester [3,4]) are used as a site service              
for job submission and control. Both payload push and pull can be used, although push               
mode is preferred on HPCs without close Storage Element, where downloads and            
uploads are managed by a dedicated service on data transfer nodes. 

- Limited connectivity execution when the nodes do not have outbound network access.            
The ATLAS software can either be installed locally on a shared file system or provided               
through fat containers on HPCs that support singularity or shifter. Such HPCs typically             
run ATLAS Event Generation or Geant 4 Simulation where conditions data can be stored              
in a local SQLite file. A dedicated ATLAS SW infrastructure is used for job submission               
and control. Those services can be installed locally on an HPC site or they can be used                 
remotely through ssh connection to the batch system and sshfs to manage input and              
output files. 

Some HPCs provide a subset of the services that are required on grid sites, eg. squid, cvmfs,                 
CE, disk cache. If ATLAS is able to transparently use any of these, the HPC services are then                  
described in detail in AGIS.  
 
 
 
 

2. ATLAS Workflows on HPC 
 

Workflow CPU s/event Input/event Output/Event cores CPU Arch 

Event 
Generation 

1-5000 <0.001 100kB 1, some multi x86_64,Power9 

G4 Simulation 200-1000 100kB 1MB multi-core x86_64,Power9, 



 

ARM 

MC 
Reconstruction 

50-100 20MB pile, 
5MB overlay 

0.5MB multi-core x86_64 

Data 
Reconstruction 

50-100 1-2MB 0.5MB multi-core x86_64 

Derivations 1 0.5MB 0.01-0.05MB multi-core x86_64 

Analysis 0.01-1 0.01-0.05MB 0.001MB Single, 
multi-core 

x86_64 

Fast Chain New WF New WF New WF multi-core x86_64 

 
 

3. Payload Execution Requirements 
a. Software Distribution 

i. RHEL compatible OS - cvmfs mounted on nodes or parrot or containers 
ii. Containers or compatibility libraries for other x86-64 operating systems         

tested on SLES, Debian, Ubuntu, Gentoo, CoreOS, Cray Linux (any          
modern OS) 

iii. Dedicated compilation required for not x86_64 instructions sets like         
Power 9. 

ATLAS would benefit from dedicated/shared non x86_64 systems to compile 
ATLAS software on. 

b. Database access: 
i. SQLite partial conditions dump for selected IOV. Transparent for Geant4          

simulation, non-trivial and large for MC. 
ii. data (re)processing case for Leadership Class Facilities (LCF) will be          

addressed when it will be feasible.  
iii. Access to Frontier through squid on HPCs that provide it. This is required 

to run ATLAS reconstruction workflow.  
 
If HPC centers can provide such a service for database access then a             
larger variety of workflows requiring experiment Metadata could be run on           
these resources. (Note - we need some access to the Conditions DB files             
that come through CVMFS /cvmfs/atlas-condb/…. I see files added to it           
from 2019). 

 



 

c. Parallel jobs 
i. Node level parallelism - multi-process or multi-threaded event task farm 

distributing work within a node 
ii. Machine level parallelism - Multi-node event parallelism distributing work 

on  several hundred nodes 
● MPI -  Yoda running in production since 2016 [5] 
● TCP/IP - Raythena prototype integrating node-level and 

machine-level parallelism 
● Several HPCs limit number of  “small jobs” and may provide a 

discount for running massive multi-node parallel jobs. ATLAS has 
demonstrated packing several grid jobs into a single batch 
submission [4]. 
 

4. Authentication and Authorization 
● X509 - where the HPCs do not require custom authorization. With remote CE or              

Harvester, the grid certificates are used to access the CE and PanDA, the HPC              
login credentials are used for job submission. 

● Multi-factor authentication - Access credentials are typically short lived and need           
to be manually extended periodically. Local Harvester is typically used for job            
submission in such cases. 

● AAI and other methods are likely to become the standard way to access the              
resources in the future, the ATLAS services will need to support them in the              
future 
 

5. Data Distribution 
a. Input & Output Files 

The data on the grid is typically accessed directly with xrootd protocol or copied to/from local                
node scratch space (working directory). The remote access is mostly used for analysis jobs.              
HPCs typically have a large shared posix filesystem which is used to transfer data between               
remote Storage Elements and HPC. The payload running on the nodes reads directly from the               
shared filesystem and writes the output files there as well. In some cases, the local scratch                
storage on nodes or a Burst Buffer is used to increase I/O performance for temporary output                
files.  
 
The ATLAS agent (ARC-CE or Harvester resources broker) receives the payload description            
including a list of input files. This list is then processed by the agent’s data-transfer subsystem.                
Dedicated data-transfer nodes can be transparently used and tuned for transfer performance.  



 
The completed payloads are processed by the ATLAS agent and the output files are then               
transferred to the pre-assigned remote Storage Elements. 
 
ATLAS software typically makes many calls to open/touch small files/libraries. This has proven             
to be problematic for the shared file system meta-data servers found at HPC centers. The use                
of software containers has reduced this problem and is required unless ATLAS significantly             
improves how it access the libraries that it runs.  

b. Storage Services, Elements  and Caches 1

HPCs typically do not have close Storage Elements (SE), that would allow direct access to               
remote data on the compute nodes. There are cases when WLCG T1 or T2 facilities are                
colocated with HPC centers. In case of PizDaint, the HPC prefers to transfer the data to shared                 
burst filesystem partition prior to payload execution, even with local pledged Tier-2 storage. This              
improves the data access throughput and has stricter control of the data flow between the SE                
and shared filesystem. The shared filesystem is then used as the input file cache, which is                
managed by ARC-CE or Harvester, the oldest input files are deleted automatically when the              
cache usage is too high. The same space is also to store the output files, and those are                  
automatically removed when transferred to final SE destination.  
R&D to use XCache with xrootd protocol on the shared filesystem area or on a nearby                 

dedicated storage is conducted by ATLAS. 
The HPC center may provide a permanent storage in the future. It is assumed that it will                 

be known to the ATLAS distributed data management system (Rucio) and described as a Rucio               
Storage Element (RSE). 

6. Payload Distribution and Execution Control 
a. ATLAS Central Services 

ATLAS central services have four major components : data management (Rucio), Workflow 
management (ProdSys2), Workload management services (PanDA)  and  information system 
(AGIS) [Pic.1]. PanDA has been extended  to support full-node and large massively-parallel jobs 
and delegate the payload heartbeat to custom services such as arcControlTower and Harvester 
[Pic.2 shows harvester roles in ATLAS Distributed Computing. PanDA / Harvester installation for 
former OLCF Titan is shown on Pic.3]. HPC facilities are described in ATLAS Information 
System (AGIS). The development to optimize the HPC resource usage and data transfers is 
ongoing, since many workflows have been tuned to run well on grid resources. The next step 
will be optimisation of HPC resources utilisation to minimize data transfer to/from HPC centres 

1 In this context it is Rucio Storage Element 



 

b. Payloads distribution and control 
On grid sites, the pilot jobs typically pull the payload from PanDA (payload pull mode) and the                 
input files and software environment are then prepared matching the payload description            
requirements. The pull mode relies on the running jobs to have the full access to grid storage                 
and to ATLAS central services.  
For HPCs with Compute Elements, a Central Harvester Instance is being used to dispatch the               
payload/jobs to HPCs in the same way as it is done for grid sites, while Condor client or                  
arcControlTower are used to submit the jobs to the Compute Elements in payload push mode.               
Harvester performs all the communications with PanDA, while the other components take care             
of job submission, status and completion. 
If there is no local or remote Compute Element, a Harvester instance running on a login or                 
edge node of the HPC is being used to submit jobs to the HPC batch system and perform the                   
data transfers. 

 
 



 

 

 



 

7. ATLAS view on future HPC evolution 
The next generation of HPCs is evolving from pure computational facilities to resources that can               
be used for extreme data processing (BigData, HPDA and Artificial Intelligence (Machine and             
Deep Learning...)). These machines will also provide multi 100Gb/s external connectivity and            
data processing capacities of several TB/s, thus providing a prime infrastructure for HEP             
simulation, reconstruction, data processing and analysis. The architecture will however be very            
different to the usual grid-site: 

● Large shared file systems as primary data storage, object stores will be available later              
(>2022) 

● Burst buffers - fast NVMe, SSD dedicated storage for data processing 
● >100 core nodes with limited memory (~1GB/core or less) 
● Limited outbound throughput on the nodes 

 
The fundamental characteristic of current and next-gen HPCs: to achieve their FLOPs target             
HPC nodes will have a heterogeneous architecture with most FLOPs being provided by             
GP-GPU accelerators. The main feature of these new HPC facilities is the fact that large               
amounts of compute power is delivered by accelerators.  
 
ATLAS C/C++ code was designed and developed initially for single x86 CPU cores. It has been                
further modified for multicore CPUs. We have also demonstrated that the code can be              
recompiled for other CPU platforms such as Power9 and ARM. It has not been ported to                
GP-GPUs or/and new architectures which limits our ability to use the new generation of LCF               
machines (such as Summit). To use the large number of flops available on GPUs at HPC                
centres, some of our kernel needs to be reengineered and new algorithmic code needs to be                
developed. Demonstrators of GPU code have been shown using CUDA to run on dedicated              
NVIDIA GPUs. (Trigger demonstrator, BNL Fast Calorimeter simulation) but we have no            
production-ready code. One important challenge is to ensure the SW is sustainable in the long               
term, hence a development language needs to be used that is independent of the hardware               
where the software is running. While this is currently possible for Machine Learning applications,              
general software technologies are not yet at the level of maturity where large re-engineering              
would make sense.  
We are experimenting with toolkits such as Kokkos and SYCL, and will evaluate Intel’s One API                
once it becomes available. We expect these technologies to mature in the next 2-3 years, in                
time for the LHC Phase2. 
 
Running ATLAS code as-is on next-generation HPCs will result in an order-of-magnitude            
performance penalty. Even after porting ATLAS applications to heterogeneous CPU/GPU          
execution, to optimize the HEP workflows on  HPCs we will still need to take into account: 

● Data/Event pre-placement prior to payload execution 
● Using custom data transfer services (for example Globus) 
● Multi-threading and multi-node payload execution 



 
● Limited I/O metadata operations (eg stat calls, other filesystem operations) 

Custom, user provided private services are not appreciated on the HPCs, a common             
general-purpose services will be encouraged, so a common HEP plan is needed to address              
this.  

It is now accepted that ATLAS simulation must undergo a transformation to be able to make                 
good use of current and future computer architectures. Only by using hardware efficiently will              
ATLAS be able to achieve the massive computing throughput that will be needed in the next                
decade. HPC facilities are a particular target because of the massive computing power they              
can bring to bear. R&D efforts are underway to evaluate the feasibility of running parts of                
simulation on GPUs. 

Fully optimized use of HPC facilities is a long-term goal. Early access to (pre)exascale               
generation of HPC facilities will provide an important stimulus to this work. Access to facilities               
coupled with collaborative help in the transformation of ATLAS code would be a major scientific               
contribution to the physics discoveries of the next ten years. HPC planners acknowledge HEP              
experiments (and ATLAS in particular) and the importance of our compute intensive science             
(thanks to our previous effort of HPC/HTC integration). We must live with their requirements and               
limitations : 

● They rely on accelerators, so we must use the accelerators 
● Data intensive computing with them may be a challenge 

We need to win our place at the table for future design of the HPC landscape and there are                   
some promising signs of more attention to LHC BigData from EuroHPC. 
 

 
 
 
 
 
 

  



 

Appendix A.  HPC Facilities used by ATLAS 

 

Glossary and abbreviations 
 
ArcCE - ARC Compute Element (CE) is a Grid front-end on top of a conventional 
computing resource and HPC computing resources. 
ArcCT -  ARC Control Tower: A flexible generic distributed job management framework. 
IOV - Interval of Validity - It is an interval in time (UTC timestamp) or an interval in run 
number/luminosity block number  
Harvester - is a resource-facing service between Workflow Management System (WFMS) 
and the collection of pilots for resource provisioning and workload shaping. It is a 
lightweight stateless service running on a VObox or an edge node of HPC centers to 
provide a uniform view for various resources. 
HPC - High-performance computing (HPC) is the use of parallel processing for running 
advanced application programs efficiently, reliably and quickly. The term applies 



 
especially to systems that function above a teraflop or 1012 floating-point operations per 
second. 
LCF  -  Leadership Computing  Facility. These systems are high end computers that are 
among the most advanced in the world for solving scientific and engineering problems. 
MC  - Monte-Carlo  method is a (computational) method that relies on the use of random 
sampling and probability statistics to obtain numerical results for solving deterministic or 
probabilistic problems. 
MPI - The message passing interface (MPI) is a standardized means of exchanging 
messages between multiple computers running a parallel program across distributed 
memory. 
PanDA   -  The PanDA Production ANd Distributed Analysis system has been developed 
by ATLAS since summer 2005 to meet ATLAS requirements for a data-driven workload 
management system for production and distributed analysis processing capable of 
operating at LHC data processing scale.  
Raythena  - a vertically integrated scheduler for ATLAS applications on heterogeneous 
distributed resources. 
Rucio - Rucio is a project that provides services and associated libraries for allowing 
scientific collaborations to manage large volumes of data spread across facilities at 
multiple institutions and organisations.  
Run2 (LHC Run2)  - The second phase of LHC running period, 2015-2018 
Yoda  - Python software using MPI communication to as an  Event Service 
implementation for HPC’s. 
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