

Draft v0.0, Aug 8, 2019

ATLAS HPC Data Processing and Simulation

D.Benjamin, A.Filipcic, A.Klimentov

ATLAS HPC Data Processing and Simulation 1
Abstract 1
Introduction 2
ATLAS Workflows on HPC 2
Payload Execution Requirements 3

Software Distribution 3
Database access: 3
Parallel jobs 4

Authentication and Authorization 4
Data Distribution 4

Input & Output Files 4
Storage Services, Elements and Caches 5

Payload Distribution and Execution Control 5
ATLAS Central Services 5
Payloads distribution and control 6

ATLAS view on future HPC evolution 8
Appendix A. HPC Facilities used by ATLAS 10
Glossary and abbreviations 10
Bibliography 11

 Abstract
Experiments at the Large Hadron Collider require data intensive processing and traditionally did
not use HPCs till Run2. Before 2016 the ATLAS experiment at the LHC was using less than 10
million hours of walltime at HPCs, while over an exabyte of data was processed annually on the
grid. A large increase in data volume and data complexity at the LHC in 2016 created a
shortage of computing cycles, and HPC systems stepped in to help the LHC achieve its physics
goals. ATLAS was able to utilize about half a billion hours of walltime usage on HPCs during
2017/2018. This is a huge increase in usage over a few years - required numerous innovations
and improvements. This paper describes the use of HPCs worldwide by ATLAS, primarily for
simulations, and specifically focus on how the HPCs are integrated with the workflow
management and data management systems, and our vision for future HPC evolution and new
architectures and HPCs role for HEP.

1. Introduction
ATLAS [1] has successfully integrated HPC facilities with distributed computing and used HPCs
for more than 5 years [2]. HPC facilities are integrated via different technologies because of the
unique nature of HPCs, such as access to external network and WLCG storage endpoints [see
Appendix A for a complete list of facilities]. Several approaches have been developed and
commissioned to address differences in the access, authorization and service requirements of
the various HPC centers. The flexibility of ATLAS processing, workload management system
and data management system has enabled ATLAS to run most of the workflows on HPC.
ATLAS uses the HPCs in the following ways:

- grid-like execution when an HPC provides the external connectivity on the nodes and
enables access to cvmfs software area either by directly mounting cvmfs on the nodes or
using parrot with access to squid service. Any ATLAS workflow can execute on such
HPCs. Typically ATLAS agents (ARC-CE or Harvester [3,4]) are used as a site service
for job submission and control. Both payload push and pull can be used, although push
mode is preferred on HPCs without close Storage Element, where downloads and
uploads are managed by a dedicated service on data transfer nodes.

- Limited connectivity execution when the nodes do not have outbound network access.
The ATLAS software can either be installed locally on a shared file system or provided
through fat containers on HPCs that support singularity or shifter. Such HPCs typically
run ATLAS Event Generation or Geant 4 Simulation where conditions data can be stored
in a local SQLite file. A dedicated ATLAS SW infrastructure is used for job submission
and control. Those services can be installed locally on an HPC site or they can be used
remotely through ssh connection to the batch system and sshfs to manage input and
output files.

Some HPCs provide a subset of the services that are required on grid sites, eg. squid, cvmfs,
CE, disk cache. If ATLAS is able to transparently use any of these, the HPC services are then
described in detail in AGIS.

2. ATLAS Workflows on HPC

Workflow CPU s/event Input/event Output/Event cores CPU Arch

Event
Generation

1-5000 <0.001 100kB 1, some multi x86_64,Power9

G4 Simulation 200-1000 100kB 1MB multi-core x86_64,Power9,

ARM

MC
Reconstruction

50-100 20MB pile,
5MB overlay

0.5MB multi-core x86_64

Data
Reconstruction

50-100 1-2MB 0.5MB multi-core x86_64

Derivations 1 0.5MB 0.01-0.05MB multi-core x86_64

Analysis 0.01-1 0.01-0.05MB 0.001MB Single,
multi-core

x86_64

Fast Chain New WF New WF New WF multi-core x86_64

3. Payload Execution Requirements
a. Software Distribution

i. RHEL compatible OS - cvmfs mounted on nodes or parrot or containers
ii. Containers or compatibility libraries for other x86-64 operating systems

tested on SLES, Debian, Ubuntu, Gentoo, CoreOS, Cray Linux (any
modern OS)

iii. Dedicated compilation required for not x86_64 instructions sets like
Power 9.

ATLAS would benefit from dedicated/shared non x86_64 systems to compile
ATLAS software on.

b. Database access:
i. SQLite partial conditions dump for selected IOV. Transparent for Geant4

simulation, non-trivial and large for MC.
ii. data (re)processing case for Leadership Class Facilities (LCF) will be

addressed when it will be feasible.
iii. Access to Frontier through squid on HPCs that provide it. This is required

to run ATLAS reconstruction workflow.

If HPC centers can provide such a service for database access then a
larger variety of workflows requiring experiment Metadata could be run on
these resources. (Note - we need some access to the Conditions DB files
that come through CVMFS /cvmfs/atlas-condb/…. I see files added to it
from 2019).

c. Parallel jobs
i. Node level parallelism - multi-process or multi-threaded event task farm

distributing work within a node
ii. Machine level parallelism - Multi-node event parallelism distributing work

on several hundred nodes
● MPI - Yoda running in production since 2016 [5]
● TCP/IP - Raythena prototype integrating node-level and

machine-level parallelism
● Several HPCs limit number of “small jobs” and may provide a

discount for running massive multi-node parallel jobs. ATLAS has
demonstrated packing several grid jobs into a single batch
submission [4].

4. Authentication and Authorization
● X509 - where the HPCs do not require custom authorization. With remote CE or

Harvester, the grid certificates are used to access the CE and PanDA, the HPC
login credentials are used for job submission.

● Multi-factor authentication - Access credentials are typically short lived and need
to be manually extended periodically. Local Harvester is typically used for job
submission in such cases.

● AAI and other methods are likely to become the standard way to access the
resources in the future, the ATLAS services will need to support them in the
future

5. Data Distribution
a. Input & Output Files

The data on the grid is typically accessed directly with xrootd protocol or copied to/from local
node scratch space (working directory). The remote access is mostly used for analysis jobs.
HPCs typically have a large shared posix filesystem which is used to transfer data between
remote Storage Elements and HPC. The payload running on the nodes reads directly from the
shared filesystem and writes the output files there as well. In some cases, the local scratch
storage on nodes or a Burst Buffer is used to increase I/O performance for temporary output
files.

The ATLAS agent (ARC-CE or Harvester resources broker) receives the payload description
including a list of input files. This list is then processed by the agent’s data-transfer subsystem.
Dedicated data-transfer nodes can be transparently used and tuned for transfer performance.

The completed payloads are processed by the ATLAS agent and the output files are then
transferred to the pre-assigned remote Storage Elements.

ATLAS software typically makes many calls to open/touch small files/libraries. This has proven
to be problematic for the shared file system meta-data servers found at HPC centers. The use
of software containers has reduced this problem and is required unless ATLAS significantly
improves how it access the libraries that it runs.

b. Storage Services, Elements and Caches 1

HPCs typically do not have close Storage Elements (SE), that would allow direct access to
remote data on the compute nodes. There are cases when WLCG T1 or T2 facilities are
colocated with HPC centers. In case of PizDaint, the HPC prefers to transfer the data to shared
burst filesystem partition prior to payload execution, even with local pledged Tier-2 storage. This
improves the data access throughput and has stricter control of the data flow between the SE
and shared filesystem. The shared filesystem is then used as the input file cache, which is
managed by ARC-CE or Harvester, the oldest input files are deleted automatically when the
cache usage is too high. The same space is also to store the output files, and those are
automatically removed when transferred to final SE destination.
R&D to use XCache with xrootd protocol on the shared filesystem area or on a nearby

dedicated storage is conducted by ATLAS.
The HPC center may provide a permanent storage in the future. It is assumed that it will

be known to the ATLAS distributed data management system (Rucio) and described as a Rucio
Storage Element (RSE).

6. Payload Distribution and Execution Control
a. ATLAS Central Services

ATLAS central services have four major components : data management (Rucio), Workflow
management (ProdSys2), Workload management services (PanDA) and information system
(AGIS) [Pic.1]. PanDA has been extended to support full-node and large massively-parallel jobs
and delegate the payload heartbeat to custom services such as arcControlTower and Harvester
[Pic.2 shows harvester roles in ATLAS Distributed Computing. PanDA / Harvester installation for
former OLCF Titan is shown on Pic.3]. HPC facilities are described in ATLAS Information
System (AGIS). The development to optimize the HPC resource usage and data transfers is
ongoing, since many workflows have been tuned to run well on grid resources. The next step
will be optimisation of HPC resources utilisation to minimize data transfer to/from HPC centres

1 In this context it is Rucio Storage Element

b. Payloads distribution and control
On grid sites, the pilot jobs typically pull the payload from PanDA (payload pull mode) and the
input files and software environment are then prepared matching the payload description
requirements. The pull mode relies on the running jobs to have the full access to grid storage
and to ATLAS central services.
For HPCs with Compute Elements, a Central Harvester Instance is being used to dispatch the
payload/jobs to HPCs in the same way as it is done for grid sites, while Condor client or
arcControlTower are used to submit the jobs to the Compute Elements in payload push mode.
Harvester performs all the communications with PanDA, while the other components take care
of job submission, status and completion.
If there is no local or remote Compute Element, a Harvester instance running on a login or
edge node of the HPC is being used to submit jobs to the HPC batch system and perform the
data transfers.

7. ATLAS view on future HPC evolution
The next generation of HPCs is evolving from pure computational facilities to resources that can
be used for extreme data processing (BigData, HPDA and Artificial Intelligence (Machine and
Deep Learning...)). These machines will also provide multi 100Gb/s external connectivity and
data processing capacities of several TB/s, thus providing a prime infrastructure for HEP
simulation, reconstruction, data processing and analysis. The architecture will however be very
different to the usual grid-site:

● Large shared file systems as primary data storage, object stores will be available later
(>2022)

● Burst buffers - fast NVMe, SSD dedicated storage for data processing
● >100 core nodes with limited memory (~1GB/core or less)
● Limited outbound throughput on the nodes

The fundamental characteristic of current and next-gen HPCs: to achieve their FLOPs target
HPC nodes will have a heterogeneous architecture with most FLOPs being provided by
GP-GPU accelerators. The main feature of these new HPC facilities is the fact that large
amounts of compute power is delivered by accelerators.

ATLAS C/C++ code was designed and developed initially for single x86 CPU cores. It has been
further modified for multicore CPUs. We have also demonstrated that the code can be
recompiled for other CPU platforms such as Power9 and ARM. It has not been ported to
GP-GPUs or/and new architectures which limits our ability to use the new generation of LCF
machines (such as Summit). To use the large number of flops available on GPUs at HPC
centres, some of our kernel needs to be reengineered and new algorithmic code needs to be
developed. Demonstrators of GPU code have been shown using CUDA to run on dedicated
NVIDIA GPUs. (Trigger demonstrator, BNL Fast Calorimeter simulation) but we have no
production-ready code. One important challenge is to ensure the SW is sustainable in the long
term, hence a development language needs to be used that is independent of the hardware
where the software is running. While this is currently possible for Machine Learning applications,
general software technologies are not yet at the level of maturity where large re-engineering
would make sense.
We are experimenting with toolkits such as Kokkos and SYCL, and will evaluate Intel’s One API
once it becomes available. We expect these technologies to mature in the next 2-3 years, in
time for the LHC Phase2.

Running ATLAS code as-is on next-generation HPCs will result in an order-of-magnitude
performance penalty. Even after porting ATLAS applications to heterogeneous CPU/GPU
execution, to optimize the HEP workflows on HPCs we will still need to take into account:

● Data/Event pre-placement prior to payload execution
● Using custom data transfer services (for example Globus)
● Multi-threading and multi-node payload execution

● Limited I/O metadata operations (eg stat calls, other filesystem operations)

Custom, user provided private services are not appreciated on the HPCs, a common
general-purpose services will be encouraged, so a common HEP plan is needed to address
this.

It is now accepted that ATLAS simulation must undergo a transformation to be able to make
good use of current and future computer architectures. Only by using hardware efficiently will
ATLAS be able to achieve the massive computing throughput that will be needed in the next
decade. HPC facilities are a particular target because of the massive computing power they
can bring to bear. R&D efforts are underway to evaluate the feasibility of running parts of
simulation on GPUs.

Fully optimized use of HPC facilities is a long-term goal. Early access to (pre)exascale
generation of HPC facilities will provide an important stimulus to this work. Access to facilities
coupled with collaborative help in the transformation of ATLAS code would be a major scientific
contribution to the physics discoveries of the next ten years. HPC planners acknowledge HEP
experiments (and ATLAS in particular) and the importance of our compute intensive science
(thanks to our previous effort of HPC/HTC integration). We must live with their requirements and
limitations :

● They rely on accelerators, so we must use the accelerators
● Data intensive computing with them may be a challenge

We need to win our place at the table for future design of the HPC landscape and there are
some promising signs of more attention to LHC BigData from EuroHPC.

Appendix A. HPC Facilities used by ATLAS

Glossary and abbreviations

ArcCE - ARC Compute Element (CE) is a Grid front-end on top of a conventional
computing resource and HPC computing resources.
ArcCT - ARC Control Tower: A flexible generic distributed job management framework.
IOV - Interval of Validity - It is an interval in time (UTC timestamp) or an interval in run
number/luminosity block number
Harvester - is a resource-facing service between Workflow Management System (WFMS)
and the collection of pilots for resource provisioning and workload shaping. It is a
lightweight stateless service running on a VObox or an edge node of HPC centers to
provide a uniform view for various resources.
HPC - High-performance computing (HPC) is the use of parallel processing for running
advanced application programs efficiently, reliably and quickly. The term applies

especially to systems that function above a teraflop or 1012 floating-point operations per
second.
LCF - Leadership Computing Facility. These systems are high end computers that are
among the most advanced in the world for solving scientific and engineering problems.
MC - Monte-Carlo method is a (computational) method that relies on the use of random
sampling and probability statistics to obtain numerical results for solving deterministic or
probabilistic problems.
MPI - The message passing interface (MPI) is a standardized means of exchanging
messages between multiple computers running a parallel program across distributed
memory.
PanDA - The PanDA Production ANd Distributed Analysis system has been developed
by ATLAS since summer 2005 to meet ATLAS requirements for a data-driven workload
management system for production and distributed analysis processing capable of
operating at LHC data processing scale.
Raythena - a vertically integrated scheduler for ATLAS applications on heterogeneous
distributed resources.
Rucio - Rucio is a project that provides services and associated libraries for allowing
scientific collaborations to manage large volumes of data spread across facilities at
multiple institutions and organisations.
Run2 (LHC Run2) - The second phase of LHC running period, 2015-2018
Yoda - Python software using MPI communication to as an Event Service
implementation for HPC’s.

Bibliography
1. The ATLAS Collaboration, G. Aad et al., “The ATLAS Experiment at the CERN

Large Hadron Collider”, Journal of Instrumentation, Vol. 3, S08003, 2008.
2. K.De et al, Integration of Panda Workload Management System with

Supercomputers, ISSN 1547-4771, Physics of Particles and Nuclei Letters,
2016, Vol. 13, No. 5, pp. 647–653

3. Smirnova O., Kónya B., Cameron D., Nilsen J.K., Filipčič A. ARC-CE: updates and
plans, Computer Research and Modeling, 2015, vol. 7, no. 3, pp. 407-414

4. T.Maeno et al, Harvester : an edge service harvesting heterogeneous resources
for ATLAS, ATL-SOFT-PROC-2018-029

5. P.Calafiura et al, Fine grained event processing on HPCs with the ATLAS Yoda
system, ATL-SOFT-PROC-2015-004

