

Plans / Ideas for the LHC BPM Upgrade

Manfred Wendt (BE-BI-BP)

3/9/2019

Overview of upcoming LHC BPM Activities

- Interlock BPM consolidation
 - 8 stripline BPMs left & right of point 6
 - New read-out electronics consolidation,
 - initially triggered by operational problems with doublets
 - Prototype tested with beam during run 2
 - on BPMS.4L5v
 - Time-multiplexed BPM electrode signals
 - VFC-based commercial 14-bit FMC ADC operating at 2.6 GB/s
 - Final prototype to be installed end of LS2
 - Details to be worked out in close collaboration with MPP
 - Deployment of the entire system during an upcoming YETS...

Overview (cont.)

iBPMs:

"Guinea pig" for the following LHC BPM consolidation and upgrade projects

- Time-multiplexing of BPM electrodes
- Single-channel read-out & digitalization in the 1st Nyquist pass-band.

Overview (cont.)

- HL-BPMs (IR BPMs)
 - 28 new stripline BPMs
 - "cold" BPMs inside the cryostat
 - Observations of both beams in the same beam pipe
 - Requires a new read-out system
 - Final prototyping with beam before LS3!
 - Deployment of the entire system by end of LS3!
- Ring BPM consolidation
 - New read-out electronics for ~1000 LHC BPMs
 - Based on the given infrastructure
 - Radiation tolerant tunnel electronics
 - Prototyping during run 3
 - Deployment LS3/LS4?

LHC BPMs: Status Quo

WBTN BPM System

- Time encoded bunch-by-bunch signal processing
- 2 optical fibers per BPM

DOROS BPMs

- Narrowband electronics
- Collimator & IR BPMs

WBTN BPM Functional Principle

WBTN (cont.)

70 MHz LPF & AD96687 analog comparator define the core performance

- <=46 dB dynamic range</p>
- Vref set to
 - 2mV: HI sensitivity
 - 67mV: LO sensitivity

- Still fulfills most requirements, BUT:
 - Residual temperature sensitivity
 - Despite temperature controlled racks for the VME-based analog integrators
 - Aging effects, e.g. "electronic" offset drifts
 - Analog electronics components
 - Sensitive to signal reflections between BPM pickup and read-out electronics
 - Dynamic range limitations
 - Defined by the dual analog comparator circuit
 - Long-term maintainability, spares, calibration, etc.
 - Complex analog signal conditioning circuit
 - Will be 20 years in operation after LS3

LHC BPM Consolidation

Requirements

- Should meet ALL requirements of the present LHC BPM read-out system
- PLUS some improvements, e.g.
 - Resolution, reproducibility over long time periods, additional flexibility through gateware-based signal processing
- Two main "customers":
 - LHC OP: pilot, but mostly full machine with nominals, beam orbit mode, OFB, stability, reproducibility
 - ABP: (fat) pilot, TbT mode, SB resolution

Boundaries

- Keep the existing infrastructure
 - BPM pickups, optical fibers
- Requires radiation tolerant components!

Concept: Time-multiplexed BPM signal processing

Interlock BPM R&D: Beam Measurements

60 GS/s, 8-bit, commercial oscilloscope

3.2 GS/s, 12-bit, FMC digitizer

2.6 GS/s, 14-bit, FMC digitizer

Interlock BPM R&D: Estimated Performance

- Meets the LHC interlock BPM resolution requirement
 - <500 µm RMS bunch-by-bunch for a range of 5e9...2e11 ppb w/o gain switching!</p>
 - including a beam displacement range of ±7.5 mm
- Keeps the reported mean value beam position over the entire bunch intensity range
- Operates also with 5+20 ns doublet bunches
 - at a reduced performance

Ideas / Plans for the LHC BPM Consolidation

- Based on radiation tolerant ADCs
 - Space-grade / commercial 12-bit, multi-GB/s

1 Vpp 100Ω differential DC

100Ω Differential input AC coupled clock

12-Bit, Dual 3.2-GSPS or Single 6.4-Gsps ADC with JESD204B Interface

Features	1-ch Mode Performance (6.4 GSPS)	1 GHz	2.5 GH
Configurations (SPI controlled): Dual 12-bit	3.2 GSPS SNR (dBFS, typ, int. spurs excluded, -1dBFS)	56	55
*	it 6.4 GSPS NSD (dBFS/Hz, typ)	-153	-152
Low Power: 3.6 W tota	1ch Mode, BG Cal)	-68	-68
	Bandwidth (-3 dB) Non HD2,3 (dBc, typ)	-73	-72
Input Fullscale: 0.8 Vpp (A)	justable, 0.5 Vpp to 0.95 Vpp) Interleaving Spur (dBFS, typ)	-63	-58
Noise Floor (3.2 Gsps): -150 dBFS	NCOAD NOOM NOOM NOOM COURSE FO		
Noise Floor (6.4 Gsps): -153 dBFS	TZ SDD SPIRegisters and SDD Device Control OCC Register Single Channel Mode Control		
• IMD3 at fin = 2.5GHz: -73 dBc (@	-7 dBFS)		D000+
Code Error Rate: 10 ⁻¹⁸	MINI ARCA HANDEN	JESDOOMB :	0000
Optional Decimation 2x (real), 4	3/16x (complex)	AMOOR L	D627-
Digital Interface: JESD204E			- Down
Subclass		/ESCOSIAB	
8 Lanes at	2.8 Gbps (max Fs)	MOOR L	D087+
16 Lanes	6.4 Gbps (max Fs)		
Power supplies: 1.1V, 1.9V	5/5/87 D 5/5/87 S 5/5/87 D 5/5	Status Indicators	0080 0080 0081

Need to qualify radiation compatibility our self!

Ideas / Plans for the LHC BPM Consolidation

Requires radiation tolerant digital optical link technologies

- Current plan: Ship raw ADC data of each BPM to the surface for post-processing
- Choices to be made:
 - ADC data format: serial or parallel?
 - Parallel requires LpGBTx (7 elinks @ 1280 MB/s, 14 elinks @ 640 MB/s, 28 elinks @ 320 MB/s)
 - Max data payload, w/o or with wavelength multiplexing (CWDM)
 - 2x or 4x CWDM, additional insertion losses, increasing costs! VTRx: 10.24 GB/s
 - Max serial lane rate

Optical Link

Back-End

Time-Multiplexing: 2 or 4 BPM Electrodes?

More choices to be made:

- Measurement of higher moments: Quadrupolar Moment
- Access to the beam emittance?!
 - Requires perfect symmetry!
 - Requires an elliptical beam profile at the BPM
 - Requires perfect beam position "nulling"
- Make use of statistics
 - High sampling rate & # of samples
 - Large number of BPMs

monopole moment ∝ intensity (common mode)

$$I_{A} = -\frac{I_{beam}}{\pi} \left[\frac{\alpha}{2} + \frac{2}{R} \sin \left(\frac{\alpha}{2} \right) x_{beam} + \frac{1}{R^{2}} \sin (\alpha) \left(\sigma_{x}^{2} - \sigma_{y}^{2} + x_{beam}^{2} - y_{beam}^{2} \right) + \cdots \right]$$
dipole moment \(\pi\) position/R quadrupolar moment \(\pi\) (\(\Delta\size{1}\) (\(\Delta\size{1}\))/R²

Electrode Time Multiplexing – 2 Electrodes

Electrode Time Multiplexing – 2 Electrodes

Electrode Time Multiplexing – 2 Electrodes

HL-LHC IR BPM Read-out System

- Requires the compensation of error terms from the counterrotating beam!
 - B1-B2 bunch spacing can be as close as ~4 ns
 - Stripline BPM directivity likely to be <26 dB
 - Requires "on the flight" error correction
 - Prefer commercial, non rad-tolerant solution!
 - More choices, lower costs on "standard" components
 - Benefit from RFSoC processor technologies
 - Requires racks in non radiation areas
 - Up to 140 meter long signal cables

Key Components of the Zynq UltraScale+ RFSoC

- RFSoC monolith (single die):
 - 8x RF ADC
 - 12/14-bit, 4 GB/s
 - 8x RF DAC
 - 14-bit, 6.5 GB/s
 - 2x ARM Real-time processor
 - FPGA
 - 930k cells, 850k FFs
 - RAM, PLLs, etc.

Discussion

- Interlock BPMs
 - Safety system: no gain switching
 - Resolution limited by ADC dynamic range
- LHC IR & ring BPMs
 - AGC via DAC, e.g. triggered during abort gap
 - How to handle gain setting during beam commissioning
- Calibration signals
 - Still need a concept for the ring BPMs
 - RFSoC DAC based for the IR BPMs
- IR BPM signal cables
 - Should we save on the signal cable installation?!
 - Time-multiplexing B1-B2 stripline ports near the pickup

Summary

- LHC BPM CONS and upgrade projects
 - Will be based on time-multiplexed single channel read-out techniques
 - Offer better long term-stability, no symmetry breaking
 - Will make use of state-of-the-art
 RF and digital signal processing techniques
 - High sampling rates give more statistics
 - -> better resolution (~20...50x more samples than presently)
 - Minimize analog and RF components
 - Prone to aging, temperature and other drift effects
 - Will reuse the given infrastructure
 - BPM pickups, optical fibers, etc. if applicable

