BPMs in turn-by-turn mode: LHC experience and HL-LHC requirements

Lukáš Malina and Rogelio Tomás

03/09/2019

Outline

- Measurement conditions
- LHC experience
 - BPM gain (calibration)
 - Positional noise
 - Faulty BPMs
- HL-LHC
 - Plans for optics measurements
 - Required BPM performance

LHC Measurement conditions

- Beam?
 - 1 pilot bunch (maybe 3 in Run3)
 - Pilot bunches have $5 \cdot 10^9$ to $1 \cdot 1^{10}$ protons
- Acquire Turn-by-turn (bunch-by-bunch) BPM data
 - After excitation (AC-dipoles, kickers, RF-modulation)
 - Limited to about 40000 turns · bunches per BPM

LHC BPM calibration factors

• Calculated from measured $\sqrt{\frac{\beta_{amp}}{\beta_{nhase}}}$

- With respect to average gain in the arcs
- Between Q1-Q4 fit from ballistic optics measurement
 - can decrease the uncertainty by about factor of 2 [1]
- Specified performance: maximal gain error of 4% [2]

LHC BPM calibration errors

A. García Tabarés

Stripline (IRs): $(-3 \pm 5)\%$

Button (arcs): spread 1.7%

03/09/2019

LHC: Positional Noise

- Estimated by SVD from turn-by-turn data
 - Can be optics dependent (e.g. ATS)
 - Based on difference between raw and cleaned TbT data
 - Trade off between noise and small signals
- 100 μm in arcs, 200 μm in IRs and 15 μm with DOROS* [3]
 - 30 % relative error
 - Specified performance of **200 μm** [2]

*estimated from spectral noise at normalised frequencies around 0.3

Bad LHC BPMs in optics measurements

- Identified based on cuts
 - Amplitude, tune, correlation (SVD)
- 20 out of 500 BPMs were faulty in 2018 (E. Fol)
 - Average per beam and plane based on 2200 excitations
- In total: 4 % of BPMs are found malfunctioning
- Critical **BPMSW.1R5.B2** (vertical) missing in whole Run 2

LHC Optics corrected: 2% rms (β *=0.3 m)

₽

2018

2017

₽

Beam 1

Beam 2

03/09/2019

HL-LHC β^* and β_{waist} measurements

- Require less than 5% luminosity imbalance between IP1 / 5
 - β^* error should be below 2.3 %
- K-modulation: slow ($\beta^* \text{ error} \approx 8\%$ for $\beta^* = 15 \text{ cm}$) [4]
 - Can be improved to 4% with main bend power supplies
- Luminosity scan: (very slow, needs collisions) [5]
- BPM turn-by-turn data of excited beam: (faster)
 - relies on **BPMs (calibration and noise)**

HL-LHC IR BPMs: 1 and 5

- β -function up to 22 km
 - Oscillation amplitude during optics measurements up to 10 mm
- Phase advances between BPMs of few mrads
 - As low as 0.4 mrad
 - Needs low noise

BPMs for measurement with $\beta^* = 15$ cm

- Positional noise < 15 μ m
 - Calculate β from phase advance of 0.4 mrad (Q3-Q4)
 - Get error of about 10% from a single BPM combination
 - Phase advance error of 0.2 mrad over IP for β_{waist} [5]
 - Can be relaxed with longer AC-dipole plateau
- Calibration error < 1.6% (Assuming beam-based calibration)
 - Get β_{waist} error < 2.3 %

HL-LHC Requirements (turn-by-turn)

- Bunch-by-bunch acquisition (all BPMs)
 - At least 20000 turns for 3 bunches
- IR BPMs for a **pilot** bunch in ± 20 mm around the centre:
 - Position noise below 15 μ m
 - Calibration errors below 1.6 %
- Any improvements of arc BPMs are very welcome

References

- 1) A. García Tabarés Valdivieso, Optics-measurement-based Beam Position Monitor calibration, PhD thesis.
- 2) J.-P. Koutchouk, Measurement of the beam position in the LHC main rings, <u>https://cds.cern.ch/record/1068133/files/cer-002724157.pdf</u>
- 3) T. Persson et al., Linear coupling dependence on intensity and a next step towards a feedback (MD1850), https://cds.cern.ch/record/2255976/files/CERN-ACC-2017-0008.pdf
- 4) M. Hofer et al., K-modulation in future high energy colliders, IPAC 19, paper MOPMP022.
- 5) J. Coello de Portugal et al., New local optics measurements and correction techniques for the LHC and its luminosity upgrade, submitted to Phys. Rev. Accel. Beams.

Backup slides

03/09/2019

LHC BPM calibration from ballistic optics

03/09/2019

SVD cleaning - review

tbt data matrix

- Use few largest singular values (modes) to remove noise
- Columns of U and V matrices are orthonormal vectors
 - Bad BPMs dominate modes (limit typically > 0.9)

