
Implementation of
GlobalModuleIndex in ROOT and

Cling
Arpitha Raghunandan

National Institute of Technology Karnataka, India

Google Summer of Code 2019 with CERN-HSF

May 27th - August 26th

Mentors: Yuka Takahashi, Vassil Vassilev, Oksana Shadura

Motivation of using C++ Modules
● Textual includes

○ Expensive and fragile

● PCH or Precompiled Headers

○ Monolithic

● PCMs or Precompiled Modules

○ Solves the above problems

○ Envision the better performance for experiments

Problem Statement: Implementation of GlobalModuleIndex

Identifier 2

3

b.pcm, c.pcm,

g.pcm, h.pcm,

i.pcm

Identifier 1

2

b.pcm, d.pcm,

e.pcm, f.pcm,

g.pcm

Identifier 4

a.pcm, b.pcm,

c.pcm, d.pcm,

h.pcm, k.pcm

1

GlobalModuleIndex

Test

Program

…

…

…

Identifier 1

…

…

ROOT

b.pcm,

d.pcm,

e.pcm,

f.pcm,

g.pcm

GlobalModuleIndex

Issues error:

unknown

identifier

Load

PCMs

Found

Issues

error:

unknown

identifier

Current implementation of

GMI returns a superset of

required modules, and

hence is underperforming

Problem Statement: Implementation of GlobalModuleIndex
● GlobalModuleIndex: A mechanism to create the table of symbols and

PCM names so that ROOT can load a corresponding library when a

symbol lookup fails.

● On-disk hash table containing all identifiers present in all PCMs.

● Helps improve ROOT’s performance by speeding up its start-up time.

Phase 1: May 27th - June 24th

Comparison of Modules and Identifiers
● Found and compared the (number of) modules loaded both with and

without the GlobalModuleIndex implementation for:

○ ROOT start-up time

○ tutorials/hsimple.C test

○ tutorials/geom/geometry.C test

● Found the identifiers which cause the PCMs to be loaded in the above

3 cases, which can be seen here, here and here.

● Found the methods which cause the above PCMs to be loaded in the 3

cases.

● Found a few ROOT identifiers (not in stl and libc) which required

the loading of modules

https://gist.github.com/arpi-r/c06173b2c2800d5a308608d90d6e7218
https://gist.github.com/arpi-r/bd64659252d2d028e7f7bc5ea24ddc26
https://gist.github.com/arpi-r/dba3277b20e9e11580a2fa8b902e3dfd
https://gist.github.com/arpi-r/1e583c525157d0334f98925f66e1083f
https://gist.github.com/arpi-r/3f2b2a2fe0a9740aae7e4067e78f08fc
https://gist.github.com/arpi-r/669a8b1aea578f02a256c52b69683316
https://gist.github.com/arpi-r/538a8c64574d2b9b2d0d31a9ba79227d
https://gist.github.com/arpi-r/c099c717365301344dd24957f0c2b4fe

Tests and Performance
● Initially, around 450 tests were failing, which reduced to around 50 by

cleaning the code.

● Compared the time and memory footprints of the module

implementation with and without GlobalModuleIndex

● Found that without rdict PCMs fewer modules are loaded at ROOT

start-up time

https://gist.github.com/arpi-r/af8de03a1b9f21bcc51d488e9d2a1ab7
https://gist.github.com/arpi-r/8c129945566182936ad985071e752293

Phase 2: June 28th - July 22nd

Tests and Performance
● Rdict PCMs were generated by Rootcling to efficiently store information

needed for serialization. The GlobalModuleIndex showed better performance

without these Rdict PCMs.

● Found the *rdict.pcms that get loaded for:

○ root start-up

○ tutorials/hsimple.C

○ tutorials/geom/geometry.C

● Developed a script to find the modules/libraries loaded by each test/tutorial

run by ctest

● Fixed some failing tests with a change, when run with modules on

● Fixed a number of failing tests by adding some modules to FIXMEModules

(Temporary solution)

https://gist.github.com/arpi-r/ec02378c397cf690990be540120c59d3
https://gist.github.com/arpi-r/6d80d6c026d23ad7017706716de15786
https://gist.github.com/arpi-r/0a464ae965cffc0a357b1e850b540a2b
https://github.com/arpi-r/root/blob/global_module_index/core/metacling/src/TCling.cxx#L1173

CPU Time Performance Evaluation

Root : 28% decrease

hsimple.C : 8% decrease

geometry.C : 4% decrease

Root : 80% decrease

hsimple.C : 32% increase

geometry.C : 11% decrease

There is an increase in System CPU

time in the case of hsimple because

GMI loads 30 redundant modules,

which we know how to fix.

Memory Performance Evaluation

Root : 31% decrease

hsimple.C : 12% decrease

geometry.C : 9% decrease

Root : 44% decrease

hsimple.C : 13% decrease

geometry.C : 12% decrease

Phase 3: July 26th - August 19th

Fixing Failing Tests
● Fixed a number of failing tests by adding some more modules to

FIXMEModules

● Bug in Clang:

○ The issue occurs in HeaderSearch.cpp when both

PrebuiltModulePath and ModuleCachePath point to the same

folder

○ Working on coming up with a reproducer test for Clang

https://github.com/arpi-r/root/blob/global_module_index/core/metacling/src/TCling.cxx#L1173

Performance Evaluation and Tests
● Difference in number of failing tests over the coding period

● Developed a script to extract time and memory measurements for

each test/tutorial run by ctest

● Latest performance results can be found here and here.

https://gist.github.com/arpi-r/fc0f7e691f72217e296a0fe627fc8565
https://docs.google.com/spreadsheets/d/12tZ_tmenR7fytcZpigfLOarNq1tIqPubTXWWMwz8lJg/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1Kq62P2Ojk2fgltEI6ynz-JhqZ8DQTFcRQi2UcxZUUoI/edit?usp=sharing

CPU Time Performance Evaluation

The increase in System CPU Time is due to the fact that

we are making too many calls to the virtual method which

is supposed to resolve a missing symbol

ROOT master uses PCH, which

is highly optimized.

Memory Performance Evaluation

ROOT master with

modules and

GlobalModuleIndex

use almost the same

memory as ROOT

master with PCH !!

The memory usage can

be further decreased as

currently a superset of

the required modules is

getting loaded

Conclusion
● The current GlobalModuleIndex implementation shows promising

results in improving performance

● However, the current implementation is still not fine tuned as a lot

more modules are being loaded unnecessarily.

● If the identifier → module mapping can be made such that the

definition is stored first, the number of modules loaded can be further

reduced, further improving performance

Acknowledgement
I would like to thank my mentors, Yuka, Vassil and Oksana for all their

help over the summer.

Thank you

