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Scope of Innovative Algorithms (1A)

* Algorithms for real-time processing of detector data in the software trigger and
offline reconstruction are critical components of HEP's computing challenge.

- These algorithms face a number of new challenges during HL-LHC:
1. Upgraded accelerator capabilities, with more collisions per bunch crossing
(pileup)
2. Detector upgrades, including new detector technologies and capabilities
3. Increased event rates to be processed
4. Emerging computing architectures

Innovative Algorithms will employ a wide range of
strategies to address these challenges and ensure that
experiments are ready for HL-LHC physics




Initial activities will form around two themes:
Novel Techniques and Novel Architectures

Novel Techniques Novel Architectures

R tracking Given the HL-LHC timescale,
R mance projects must strive to
advance best practices for
software development in HEP

acking optimized
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Innovative Algorithms Projects

e MKFit: Parallel Kalman-filter tracking

o , Slava Krutelyov, Steve Lantz, Mario Masciovecchio,
Dan Riley, Matevz Tadel, Bei Wang

e ACTS: Experiment-independent, inherently parallel track reconstruction

o , Xiaocong Ai, Nick Cinko, Rocky Garb (Jan 2020)
e FastPID: Fast PID simulation for LHCb

o , Daniel Craik
e ML on FPGAs: Fast inference of deep neural networks on FPGAs

o , Daniel Craik, Dylan Rankin
e ML4Jets: Machine learning for jets

o , Sebastian Macaluso, Irina Espejo

e ML4Vertexing: Machine learning for vertexing
o , Henry Schreiner, Marian Stahl, Gowtham Atluri, Sarah Carls



Groups are focused on answering ¢ questions

How to redesign tracking algorithms How to make use of major advances in
for HL-LHC? machine learning (ML)?

e Determination of charged-particle e Use of ML in HEP may be a major opportunity
trajectories (“tracking") is |argest o Capitalize on industry and data science
component of event reconstruction techniques and tools

e IRIS-HEP investigations o Could reduce CPU needs

o More efficient algorithms o Could lead to wider use of accelerators
o  More performant algorithms e IRIS-HEP investigatic.)ns.
o Use of hardware accelerators o New HEP applications of ML

o Use of new ML techniques
o ML on accelerators in realistic HEP apps




MKFit - Parallel Tracking (Cornell, Princeton, UCSD)
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http://trackreco.github.io/
https://arxiv.org/pdf/1811.04141.pdf

Primary focus is code
integration with CMSSW

o Initial version integrated and to be
included in next CMS production

release
Production release of
Matriplex expected soon

R&D evaluations underway

o GPU demonstrators
o Methods to streamline data
conversions

Presentations: ACAT,
Connecting the Dots, and
IRIS-HEP topical meeting

MKFit: Progress and Plans

Technical Details

* Run mkFit within CMSSW

* mkF'it used for building only

* Single-thread test using TTBar PU 50
Results

* Track building is 4.3x faster

* 40% of time is spent in data format
conversions — actual track finding is
7x faster

* Track building now takes less time
than track fitting

* Even larger potential speedups if
multiple threads are used
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Tracking performa
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ACTS (UCB, Stanford): Overview

Open-source software project for
multi-experiment track reconstruction built
on the extensive experience in track
reconstruction in the ATLAS experiment.
Also being pursued for Belle-1l and FCC
Discussions with JLab, EIC, LDMX, NuStar
about potential applications

Initial IRIS-HEP contributions:

pattern recognition, ambiguity resolution,
GPU demonstrators

Collaborators: CERN, KIT, LBNL
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http://acts.web.cern.ch/ACTS/

ACTS (UCB, Stanford): Progress and Plans

Hosted
(hackathon) in January 2019
IRIS-HEP contributions to ACTS
o Kalman Filter prototype algorithm
implemented: performance and validation
studies underway
o Ambiguity resolution algorithm implementec
ML studies ongoing
o Track following implementation to begin
o NERSC GPU-hackathon: prototype seeding
code implementation on GPU
Presentations: DPF 2019, USATLAS Annual meeting

Cinko, Gray et al.

0.4
False positive rate
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https://indico.physics.lbl.gov/indico/event/712/

ML on FPGAs (MIT, UIUC)

HLS4ML is a machine learning inference package for FPGAs. Creates
firmware implementations of ML algorithms using high level synthesis
language (HLS)

Initial IRIS-HEP contribution: Identify specific use cases and operational
scenarios for use of FPGA-based algorithms in experiment software trigger,
event reconstruction or analysis algorithms

Collaborators: FNAL, MIT, CERN, Florida, UIC, UW his 4 ml

13


https://github.com/hls-fpga-machine-learning/hls4ml
https://github.com/hls-fpga-machine-learning/hls4ml

ML on FPGAS

Duarte et al.
1000

® ® Azure ResNet-50 GPU
A A TF ResNet-50 GPU

e Presentations include ACAT, CTD, ]
HOW2019, IRIS-HEP topical meeting T
e FastML workshop (Partly IRIS-HEP GPU

blueprint) @FNAL starting :
e Paper submitted to Computing and - ]
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https://indico.cern.ch/event/822126/overview
https://arxiv.org/pdf/1904.08986.pdf

Applications for R&D and plan forward

Local calorimetric reconstruction to demonstrate physics-grade machine learning
algorithms used in core online/offline reconstruction
e A major contribution to the overall HLT timing budget (15-20%, as algorithms
run on essentially every event)
e Using CMS HCAL as initial example for developmentlinitial evaluations are
using NN regression algorithm to do cluster reconstruction

Current work has seeded two recent NSF awards (HDR, CSSI) to demonstrate FPGA
use at scale and to broaden the set of ML algorithms easily ported to FPGAs
e |RIS-HEP deliverables to focus on demonstrating that the “physics”
performance of ML approaches does (or does not) outperform that of current

approaches in calorimetric reconstruction
13



ML4]ets (NYU)

Crossover project to connect with diverse segments of machine learning community.
Strong connections with theoretical community interested in jet physics

Progress and plans:

e (o-organized KITP Conference (Feb 2019)
e Co-organizing Hammers & Nails Workshop (July 2019),
IPAM Workshop (October, 2019), ML4Jets workshop ( January 2020)
e Community engagement/workshops on topics such as
o Fast simulation techniques for detector and reconstruction objects
o Establishing/curating common metrics, datasets, and other ingredients for event
reconstruction algorithm development. Eg. Top Tagging |

®
¢ ®

The Machine Learning Landscape of Top Taggers

G. Kasieczka (ed)!, T. Plehn (ed)?, A. Butter?, K. Cranmer®, D. Debnath?, M. Fairbairn®,
W. Fedorko®, C. Gay®, L. Gouskos’, P. T. Komiske®, S. Leiss!, A. Lister®, S. Macaluso®?,
E. M. Metodiev®, L. Moore?, B. Nachman,'!!| K. Nordstrém'>13, J. Pearkes®, H. Qu7,
Y. Rath'¥, M. Rieger'®, D. Shih*, J. M. Thompson?, and S. Varma®
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https://arxiv.org/pdf/1902.09914.pdf

Tree Neural network approach demonstrated on
reference dataset

AUC | Acc 1/ep (es = 0.3) #Param

single mean median
CNN ([16] 0.981 | 0.930 914+14  995+15 975418 610k
ResNeXt [30] 0.984 [ 0.936 | 1122447 1270+28 1286431 1.46M
TopoDNN [18] 0.972 | 0.916 295+5 382+ 5 378+ 8 59k

Multl-body N- subJettmess 6 [24] 0.979 | 0.922 792+18 798i12 808:&:13 57k

1025411 1202:1:23 1188:{:24

PartlcleNet (47] 0.985 | 0.938 | 1298146 1412:1:40 1393:i:41 498k

LBN ([19] 0.981 | 0.931 83617 859467 96620 705k
LoLa [22] 0.980 | 0.929 722417  768+11 765+11 127k
Energy Flow Polynomials [21] 0.980 | 0.932 384 1k
Energy Flow Network [23] 0979 [ 0.927 | 633+31 729+13 = T726+11 82k
Particle Flow Network (23| 0.982 | 0.932 891+18 1063+21 1052429 82k

GoaT | 0.985 | 0.939 | 1368+140 15494208 | 35k




ML4Vertexing (Cincinnati, Princeton)

Develop novel primary vertex algorithm using hybrid Machine Learning
Motivation: Run 3 luminosity increase for LHCb means that algorithms
must be robust and efficient enough to find 5 vertices per event at
30 MHz data rate

Kernel generation Make predictions Interpret results
—_— —> [Pl —

CNNs ‘ ‘
ng
Truth T \Va \idatiol
i 18



ML4Vertexing: Progress and Plans

e Presentations at ACAT, CTD and HOW2019
e |Initial software version released. Now working to fit into the LHCb

software and production system environments

e Recent algorithmic
improvements include
using multidimensional
information as would be
necessary to adopt this
approach in higher pileup
environments

1.0

0.8

0.6

0.2

0.0

Schreiner et al.

e Proof-of-Principle established: a hybrid ML algorithm
using a 1-dimensional KDE processed by a 5-layer CNN
finds primary vertices with efficiencies and false positive
rates similar to traditional algorithms.

e Efficiency is tunable; increasing the efficiency also
increases the false positive rate.

e Adding information should improve performance.

e can add KDE (x,y) information to algorithm
e can associate tracks to PV candidates, then iterate.

e Next steps: train with full LHCb MC and deploy
inference engine in LHCb HItl framework.

e Beyond LHCb

e approach might work for ATLAS and CMS (in 2D?);
e algorithm is an interesting ML laboratory.

20 25 30 35 40 45 50 55
# LHCb long tracks
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FastPID (MIT)

Goal: Improve particle ID using machine
learning techniques
e Current R&D aims to evaluate
autoencoder approach for particle
identification in LHCb environment Input
e Collaborators: Universite de Paris
VI, Yandex School of Data Science
Progress and plans: oigesead
e Developed working version of a VAE
e Simulate PID distributions with good fidelity
e Working to document and release results this fall

Deep Autoencoder

Encoding DBN Decoding DBN

Output

O
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O 00O

00O

0000

O00O0O0

O000O0O
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Primary |A Goals for IRIS-HEP design phase

Novel algorithm demonstrations

e Effectiveness of GAN/autoencoder approach for PID

e Performance benchmarks for KalmanFilter in CMSSW for trigger/reconstruction

e Performance benchmarks for ACTS components on GPUs

e |dentify promising operational scenarios FPGA use in reconstruction/HLT.

o Performance assessments for FPGA-based reconstruction/HLT algorithms

e Effectiveness of machine learning track ambiguity resolution algorithms

e Assessment of parallel algorithm implementations for regionally based pattern recognition
Software products developed and released to HEP community

e Matriplex package release (Now included in CMSSW via mkFit integration)

e ML vertexing algorithm release (Initial versions done)

e ML on FPGAs release

e ACTS VO release
Community engagement including workshops on tracking (CTD2020 @ Princeton), machine
learning (ML4Jets @ NYU) and machine learning (FastML @ Fermilab)
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